Author: Santana-Leitner, M.
Paper Title Page
MOP046 Undulator Radiation Damage Experience at LCLS 127
  • H.-D. Nuhn, R.C. Field, Yu.I. Levashov, X.S. Mao, M. Santana-Leitner, J.J. Welch, Z.R. Wolf
    SLAC, Menlo Park, California, USA
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515
The SLAC National Accelerator Laboratory has been running the Linac Coherent Light Source (LCLS), the first x-ray Free Electron Laser since 2009. Undulator magnet damage from radiation, produced by the electron beam traveling through the 133-m long straight vacuum tube, has been and is a concern. A damage measurement experiment has been performed in 2007 in order to obtain dose versus damage calibrations. Radiation reduction and detection devices have been integrated into the LCLS undulator system. The accumulated radiation dose rate was continuously monitored and recorded. In addition, undulator segments have been routinely removed from the beamline to be checked for magnetic (50 ppm, rms) and mechanic (about 0.25 μm, rms) changes. A reduction in strength of the undulator segments is being observed, at a level, which is now clearly above the noise. Recently, potential sources for the observed integrated radiation levels have been investigated. The paper discusses the results of these investigation as well as comparison between observed damage and measured dose accumulations and discusses, briefly, strategies for the new LCLS-II upgrade, which will be operating at more than 300 times larger beam rate.
The Collimation System for LCLS-II*  
  • J.J. Welch, E. Marín, T.O. Raubenheimer, M. Santana-Leitner, G.R. White
    SLAC, Menlo Park, California, USA
  • C.E. Mayes
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  Funding: * Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.
Minimizing beam loss is particularly important for LCLS-II because of very high average power beams, radiation sensitive undulators, and the high cost of adding shielding to existing accelerator enclosures. For example, for acceptable undulator magnet lifetime, dark current originating at the cathode must be attenuated by approximately a factor of 10-7 in a single pass before it reaches the undulator. Multi-stage, high-efficiency collimation is necessary. The system is described in this paper. A model of beam halo and dark current is developed that includes sources due to Touschek, intra-beam, and beam-gas scattering, as well as field emission from superconducting cavities, photo-emission from stray light on the cathode, and cathode field emission. The location and gap of the collimators is optimized using tracking analysis and other tools developed and validated at Cornell. Collimator efficiency is estimated by tracking secondaries using a modified version of Lucretia which call GEANT4. Finally collimator jaw design is optimized to produce a minimum leakage using FLUKA. These topics are discussed in this paper.