

Progress in SRF guns

Sergey Belomestnykh Collider-Accelerator Department, BNL August 27, 2013

first lasing

First beam 21st April 2011

a passion for discovery

Office of Science

Talk outline

 \diamond Overview

- ♦ SRF gun types
- ♦ Cathode type
- ♦ Recent progress at facilities around the world
- ♦ Summary

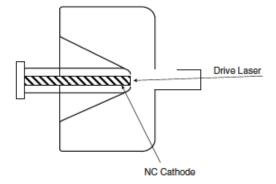
Overview

- Superconducting RF has become the technology of choice for accelerating systems of many high-intensity accelerators. As the technology matured, it is now finding applications other than simply accelerating structures.
- One of such applications is photocathode RF guns. SRF has advantage over other electron gun technologies in CW mode of operation, where it potentially can provide higher rate of acceleration, generating high-charge bunches and high average beam currents.
- The first SRF guns were developed using elliptical cavity geometries (conventional shapes of high- β SRF cavities).
- Quarter Wave Resonator (QWR) option is gaining popularity. QWRs are especially well suited for producing beams with high charge per bunch.
- After brief review of the gun and photocathode types, I will describe particular projects and their recent achievements: DC-SRF gun at PKU; elliptical SRF photoinjecors at Rossendorf (MOOBNO02, MOPSO76), BERLinPro, and BNL ERL; QWR guns at BNL, NPS (TUPSO08, WEPSO83), and University of Wisconsin.

Challenges and issues

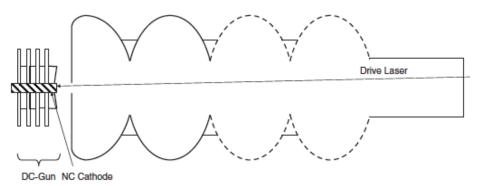
- In SRF photoinjectors we are merging together such complex technologies as high QE photocathodes, superconducting RF, high repetition rate synchronizable lasers.
- Among the challenges imposed by these technologies are maintaining UHV environment for the cathodes, maintaining cleanliness of the cavity RF surfaces while allowing operation and replacement of the cathodes, designing low RF loss and low heat leak interface between the cold cavities and warmer cathodes, synchronizing high repetition rate lasers with RF.
- Low emittance: high acceleration rate; focusing near a cathode; place the first solenoid as close to the cavity as possible; precise synchronization of a laser with RF; transverse and temporal bunch shaping.
- High bunch charge at high repetition rate: high QE photocathode with long life time; high average power, high repetition rate lasers.
- For semiconductor (or other high QE) photocathodes to be able to operate in the SRF cavity environment: at least one type of photocathodes, Cs₂Te, was demonstrated to have long lifetime, more studies needed for other types.
- Cavity preparation: etching/cleaning a cavity with small opening on one side is challenging; effect of the NC cathodes on SRF performance is still unclear.
- Demonstrate stable operation in an accelerator: high RF power, coupler kick, HOM excitation.

SRF gun types

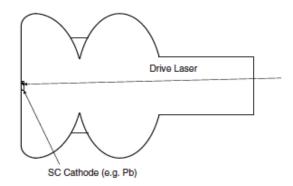

Overview on superconducting photoinjectors

A. Arnold* and J. Teichert

Forschungszentrum Dresden-Rossendorf (FZD), P.O. Box 510119, 01314 Dresden, Germany (Received 29 November 2009; revised manuscript received 21 October 2010; published 2 February 2011)


(a) NC CATHODE AND ELLIPTICAL SRF CAVITY

(c) NC CATHODE AND ¼WAVE SRF CAVITY



Different Choke-Filters NC Cathode

(b) NC CATHODE, DC GAP AND ELLIPTICAL SRF CAVITY

(d) SC CATHODE AND ELLIPTICAL SRF CAVITY

Brookhaven Science Associates August 27, 2013

SRF gun types (2)

Overview on superconducting photoinjectors

A. Arnold* and J. Teichert

Forschungszentrum Dresden-Rossendorf (FZD), P.O. Box 510119, 01314 Dresden, Germany (Received 29 November 2009; revised manuscript received 21 October 2010; published 2 February 2011)

TABLE I. Comparison of all presently known SRF gun projects and whose expected parameters. Most of the information was provided by the expert named first in the last row. Values taken from other references are additionally marked by an index in the table. Values marked by # are calculated out of V_C and U and those that are marked by * are calculated using P_{dss} and Q_0 . Still open parameters are filled in with tbd (to be determined).

		Ellip	tical cavity + NC	cathodes	DC-SC		rter wave SRF gu		Elliptical cavity	+ SC cathodes
						NPS	WiFEL	BNL		
Parameter	Units	FZD	BNL/AES	HZB BerlinPro	PKU gun	500 MHz	200 MHz	112 MHz	Pb/Nb hybrid gun	HZB HoBiCat
Beam kinetic energy, Vc	MeV	9.4	2	≤ 3.5	5	1.2	4.58	2.7	~5	≤ 3.5
Maximum bunch charge,	nC	1/0.077	5/1.4 ⁽¹⁾ /0.7	0.077	0.1	1	0.2	5	1	0.015
q _{max}										
Normalized transverse	mm mrad	2.5/1	5/2.3 ⁽¹⁾ /1.4	1	1.2	4	0.9	3	1	1
emittance, $\varepsilon_{n,t}$										
Average beam current, I_b	mA	0.5/1	50/500 ⁽¹⁾ /500	100	1-5	1	1.0	50	<1 rather 0.1	0.0045
Peak current, Ipk	A	67/20	166/70 ⁽¹⁾ /35	5	20	50	50	18.5	50	6
Photocathode		Cs ₂ Te	CsK ₂ Sb	CsK ₂ Sb	Cs ₂ Te	tbd	Cs ₂ Te	tbd	Pb	Pb
Quantum efficiency, QE	%	1	18	10	1-5	tbd	1	tbd	0.0017	5×10^{-2}
Driving laser wavelength,	nm	263	355	527	266	tbd	266	tbd	213	260
λ Disc disc (TRUD)		15/4	20 (20(1) (20	~ 00		10.40		270	<20	24.2
Pulse duration (FWHM)	ps	15/4	30/20(1)/20	≤ 20	5	10-40	4	270		2 to 3
Bunch repetition rate, f_{mp}	MHz	0.5/13	10/352(1)/704	≤ 1300	81.25	10-5-100	5	9.4	<1 rather 0.1	0.030
Gun frequency, f_0	MHz	1300	703.75	1300	1300	500	200	112(1)	1300	1300
Operating temperature	K	2	2	2	2	4.2	4.2	4.2(1)	2	2
Dissipated power, P _{diss} at	w	26	4.2	12.1 ⁽³⁾		8.6	42	16.6 ⁽¹⁾	143	12.1(3)
the intrinsic Q_0 of		@ 1×10 ¹⁰	@ 1×10 ¹⁰	@ 1×10 ¹⁰		@ 9.5×10^8	@ 3.2 × 10 ⁹	@ 3.5×10 ⁹	@ 5×10^{9}	@ 1 × 10 ¹⁰
Active cavity length, lactiv	cm	50	9.5	17.1	41.7	8	19	20	18.4	17.1
$R_{\rm shunt}/Q_0, r$	Ω	334	96	$189^{(4)}, \beta = 1$	418, $\beta = 1$	185, $\beta = 1$	155.7*	126.8(1)	170, $\beta = 1$	189, $\beta = 1$
(R _{shunt} from accelerator definition)			95.5*	101.4*		176.3*		126.6*	35.2*	101.4*
Transit time factor, V_c/V_0	TTF	0.715	0.888(2)	0.54(3)	0.74 ⁽⁴⁾	0.94	0.87	0.99(1)		0.54 ⁽³⁾
Stored energy at $E_{\rm pk}$, U	J	32.4	8.4/9.5*	14.8(3)		2.6	107.2	81.4"	87	14.8(3)
Electric cathode field E_{cath}	MV/m	30	20	≥ 10	~5(4)	25	45	19.7(1)	50-60	≥ 10
Peak electric field, Enk	MV/m	50	35.7	≤ 50	31.8	44	59	51.0	50-60	≤ 50
Peak magnetic flux, B_{pk}	mT	110	74	116	74.5	69.1	90.7	97.8(1)	104-125	116
Peak magnetic field, H_{pk}	A/m	87 535	59000	≤ 92 600	59285	55 000	72 165	78000	$(87-99) \times 10^{3}$	≤ 92600
	-				U					
Elliptical +				QWRs						
			လ							
NC cathodes			Ü)	1		
					Ω				BROOK	HEVEN
Brookhaven Science As	ssociates				\square				NATIONAL LA	ABORATORY

August 27, 2013

Photocathodes for SRF guns

- IR to UV lasers are readily nowadays with wide variety of pulse durations and average power of up to several tens of watts.
- This enables possible use of many materials belonging to two classes: metals and semiconductors.
- Metal photocathodes (Cu, Mg, Pb, Nb) are robust, but have low QE (<10⁻³) and are suitable only for use in the initial phases of an SRF gun development, when high beam intensities / high duty factors are not required.
- Coating of metal cathodes with a thin (~18 nm) layer of CsBr can increase the QE to 7.10⁻³.
- Superconducting (niobium or lead) photocathodes have been used in small R&D SRF guns as a way to avoid introduction of a special cathode plug and to reduce RF losses.
- Semiconductor photocathodes are the preferred option for many projects as they can provide very good QE, 10% and higher. However, they are very sensitive to contamination and require UHV conditions for operation.
- The most developed semiconductor photocathodes for SRF gun applications are GaAs(Cs), Cs₂Te, and CsK₂Sb.
- GaAs(Cs) is the only one of the three suitable for producing polarized electrons, but it is the most sensitive to ion back bombardment, requires an extremely good vacuum, and has a short lifetime.
- Cs₂Te is the most robust and has demonstrated a very long lifetime in an SRF gun at HZDR, but requires the use of UV lasers.
- CsK₂Sb can be used with green lasers. It demonstrated very good performance in DC guns and holds the world record of average beam current produced from an RF photoinjector. It is the most preferred option for SRF guns at present.
- A potential alternative is NaK₂Sb, which has a similar to CsK₂Sb production recipe, but proved to be more robust in experiments with a DC gun at Cornell University.

Brookhaven Science Associates August 27, 2013

NATIONAL LABO

Table 2 Properties of metal Nuclear Instruments and Methods in Physics Research A 622 (2010) 685-697

Properties of metal photocathodes.

Metal cathodes	Wavelength & energy: λ_{out} (nm),	Quantum efficiency	Vacuum for 1000 h operation	Work function, ϕ_W (eV)	Thermal emittance (microns/mm(rms))				
	ħω (eV)	(electrons per photon)	(Torr)	φ ι (20)	Eq. (3)	Expt.			
Bare metal									
Cu	250, 4.96	1.4×10^{-4}	10 ⁻⁹	4.6 [34]	0.5	1.0 ± 0.1 [39]			
						1.2 ± 0.2 [40]			
						0.9 ± 0.05 [3]			
Mg	266, 4.66	6.4×10^{-4}	10-10	3.6 [41]	0.8	0.4 ± 0.1 [41]			
Pb	250, 4.96	6.9×10^{-4}	10 ⁻⁹	4.0 [34]	0.8	?			
Nb	250, 4.96	~2×10 ⁻⁵	10-10	4.38 [34]	0.6	?			
Coated metal									
CsBr;Cu	250, 4.96	7×10^{-3}	10-9	~2,5	?	?			
CsBr:Nb	250, 4.96	7 × 10 ⁻³	10-9	~2.5	?	?			

The thermal emittances are computed using the listed photon and work function energies in Eq. (3) and expresses the thermal emittance as the normalized rms emittance in microns per rms laser size in mm. The known experimental emittances are given with references.

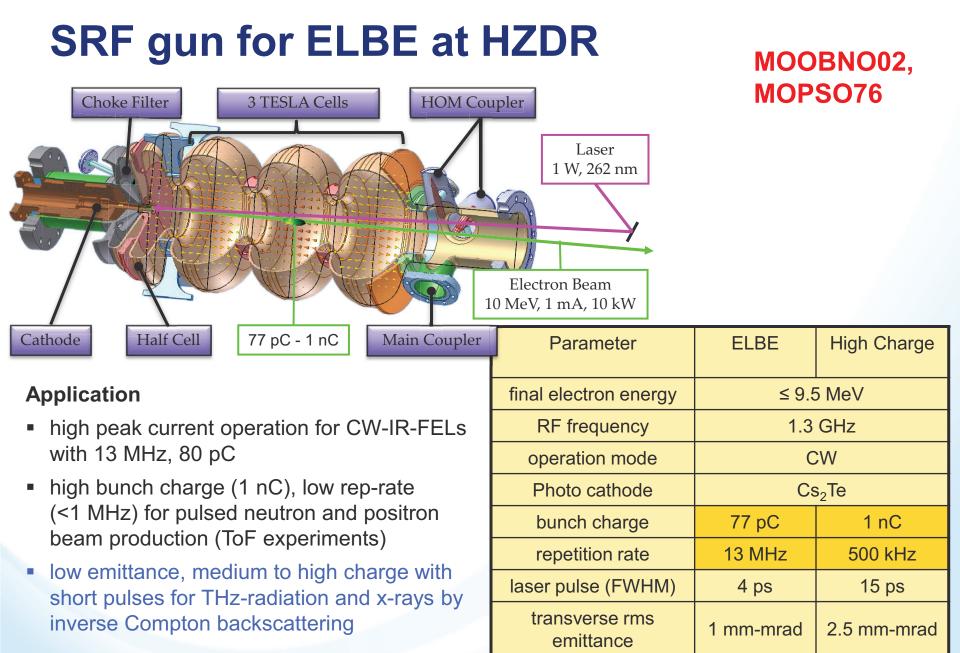
Diamond-amplified photocathodes

Semiconductor photocathodes

Metal photocathodes

Properties of semiconductor cathodes.

Table 3


Cathode type	Cathode	Typical wavelength & energy, λ _{op} e (nm), (eV)	Quantum efficiency (electrons per photon)	Vacuum for 1000 h (Torr)	Gap energy+ electron affinity,	Thermal emittance (microns/ mm(rms))	
					$E_G + E_A$ (eV)	Eq. (7)	Expt.
PEA:	Cs ₂ Te	211, 5,88	0.1	10-9	3.5 [42]	1,2	0.5 ± 0.1 [35]
mono-alkali		264, 4,70	-	-	44	0,9	0.7 ± 0.1 [35]
		262, 4,73	-	-	-	0.9	1.2 ± 0.1 [43]
	Cs ₃ Sb	432, 2.87	0.15	?	1.6+0.45 [42]	0.7	?
	K ₃ Sb	400, 3.10	0.07	?	1.1+1.6 [42]	0.5	?
	Na ₃ Sb	330, 3,76	0.02	?	1.1+2.44 [42]	0.4	?
	Li ₃ Sb	295, 4,20	0.0001	?	?	?	?
PEA:	Na ₂ KSb	330, 3.76	0.1	10-10	1+1 [42]	1.1	?
multi-alkali	(Cs)Na ₃ KSb	390, 3.18	0.2	10-10	1+0.55 [42]	1.5	?
	K ₂ CsSb	543, 2.28	0.1	10-10	1+1.1 [42]	0.4	?
	K ₂ CsSb(O)	543, 2,28	0.1	10-10	1 + < 1.1[42]	~0.4	?
NEA	GaAs(Cs,F)	532, 2.33	0.1	?	$1.4 \pm 0.1[42]$	0.8	$0.44 \pm 0.01[44]$
		860, 1.44	0.1	?		0.2	$0.22 \pm 0.01[44]$
	GaN(Cs)	260, 4.77	0.1	?	1.96+?[44]	1.35	$1.35 \pm 0.1[45]$
	GaAs(1-x)Px $x \sim 0.45$ (Cs,F)	532, 2,33	0.1	?	1.96+?[44]	0.49	$0.44 \pm 0.1[44]$
S-1	Ag-O-Cs	900, 1.38	0.01	?	0.7[42]	0.7	?

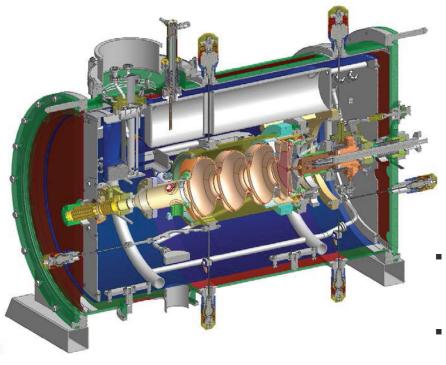
The thermal emittances are computed using the listed photon, gap and electron affinity energies in Eq. (7) and expresses the thermal emittance as the normalized rms emittance in microns per rms laser size in mm.

Brookhaven Science Assoc August 27, 2013

S. Belomestnykh: Progress in SRF guns

D.H. Dowell ^{a,*}, I. Bazarov ^b, B. Dunham ^b, K. Harkay ^c, C. Hemandez-Garcia ^d, R. Legg ^e, H. Padmore ^f, T. Rao^g, J. Smedley ^g, W. Wan^f

Brookhaven Science Associates August 27, 2013

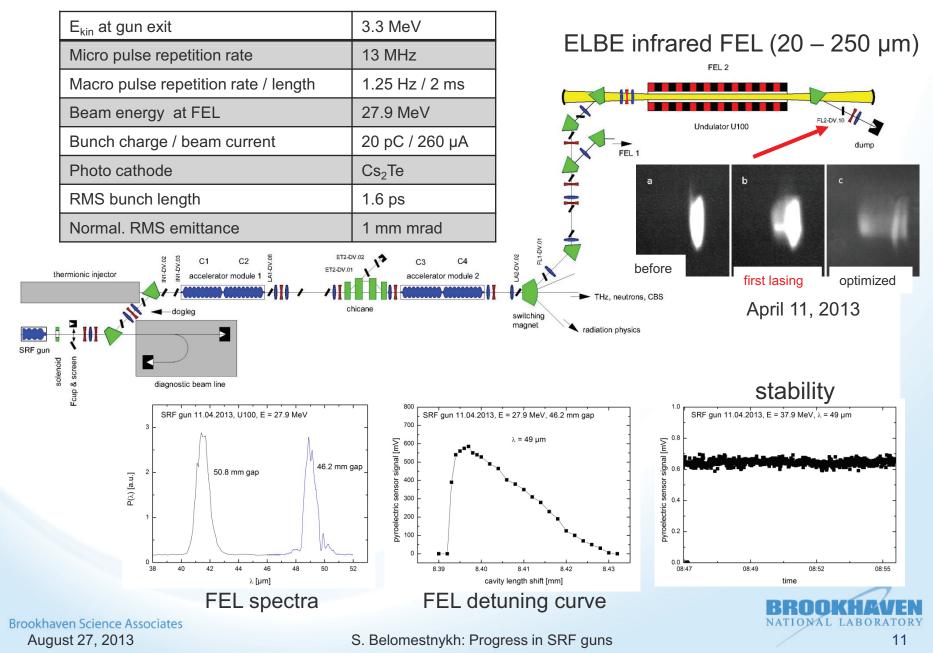

S. Belomestnykh: Progress in SRF guns

average current

9

1 mA

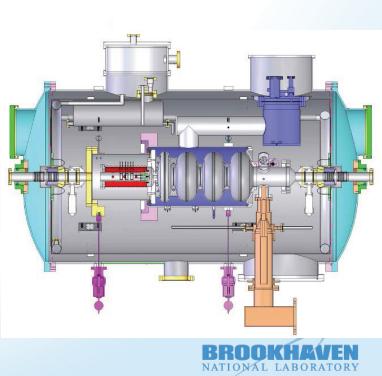
SRF gun for ELBE at HZDR



- The 3½ cell SRF gun is the first SRF gun in the world to inject a beam into an accelerator and also the first to provide beam for FEL lasing.
- Maximum bunch charge injected and accelerated in ELBE: 120 pC @ 50 kHz (6 µA); with 100% transmission: 60 pC @ 125 kHz.
- Very good performance of Cs₂Te photo cathodes demonstrated: life time of ~1 year with QE ~1%.
- Maxiumum average beam current to date is 400 μA.
- CW operation of the gun is limited to 3.3 MeV kinetic energy due to FE in the cavity.
- The cryomodule for the new gun is ready. The cavity reached 43 MV/m peak field during a cold test at JLab.

Brookhaven Science Associates August 27, 2013

First FEL operation with SRF gun at ELBE



3.5-cell DC-SRF photoinjector at Peking University

- A hybrid DC–SRF gun has been developed for the Superconducting ERL Test Facility (SETF) at Peking University
- The unique design combines a compact 90 kV Pierce DC gun equipped with a Cs₂Te photocathode and a 3½ cell, 1300 MHz SRF cavity.

Drive laser			
Pulse length (FWHM)	10ps		
laser spot (FWHM)	3.0mm		
Repetition rate	81.25MHz		
Bunch charge distribution transverse uniform , longitudinal Gaussian			
Injector	ERL mode	THz mode	
gradient	13 MV/m	15MV/m	
Bunch charge	60~100 pc	20рс	
energy	5MeV	<5MeV	
Transverse emittance (rms)	1.2mm·mrad	2.1 mm·mrad	
Longitudinal emittance (rms)	15 deg—KeV	3.0deg—KeV	
Bunch length (rms)	3ps	0.55ps	
Rms beam spot	0.3mm	1.7mm	
Energy spread	~0.5%	0.55%	

Brookhaven Science Associates August 27, 2013

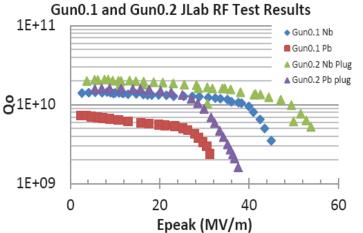
DC-SRF gun status

- A series of experiments have been carried out with the DC-SRF injector at 2 K.
- \sim 300 μ A CW electron beam was obtained with emittance of about 3 mm-mrad.
- THz radiation will be produced with this DC-SRF injector and a new beam line.

SRF guns for BERLinPro at HZB

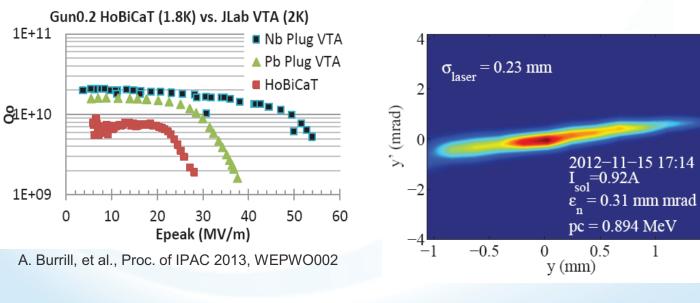
- Performance reqs for BERLinPro:
 - Beam dynamics: need good control on the transverse and longitudinal beam parameters. Mainly determined by field on cathode and setup of focusing elements.
 - Average current of 100 mA: need cathode with high QE, which can operate in SRF environment.
 - Average power: need to couple P_{avg} = 100 mA x E_b power into the cavity.
- Accordingly, three stages:

Brookhaven Science Associates


August 27, 2013

- 1. Gun0.1 and Gun0.2 are beam demonstrator experiments with SC Pb cathodes to study beam dynamics, cavity performance.
- 2. For Gun1 add NC cathode with high QE, study cathode lifetime, slice/projected emittance performance.
- 3. For Gun2 add RF input power coupler for 200 kW, study high power operation.

	HoBiCaT Guns 0.1 and 0.2	Source lab Gun1	BERLinPro Gun2		
Goal	Beam Demonstrator	Brightness R&D gun	Current Production gun		
Electron energy		≥ 1.5 MeV			
RF frequency		1.3 GHz			
Design peak field		≤ 50 MV/m			
Operation launch field	≥ 10 MV/m				
Bunch charge		≤ 77 pC			
Repetition rate	30 kHz	54 MHz / 25 Hz	1.3 GHz		
Cathode material	Pb	CsK ₂ Sb	CsK ₂ Sb		
Cathode QE	5*10 ⁻⁴	10 ⁻¹	10 ⁻¹		
Laser wavelength	258 nm	532 nm	532 nm		
Laser pulse energy	0.15 µJ	1.8 nJ	1.8 nJ		
Laser pulse shape	Gaussian	Flat-top	Flat-top		
Laser pulse length	2.5 ps FWHM	≤ 20 ps	20 ps		
Average current	0.5 µA	≤10 mA / 0.1 mA	100 mA		


Guns0: hybrid Nb/Pb gun cavities

- Gun0.1 had a thin layer of lead deposited on the back wall of niobium cavity.
- Gun0.2 had lead deposited on a niobium plug cathode, which allows decoupling of the cavity preparation from the cathode deposition.
- Both guns generated beams the bunch charge and beam current were limited by low QE of the lead photocathodes (10⁻⁵ to 10⁻⁴) and available UV laser power.

1.5

Brookhaven Science Associates August 27, 2013

Gun1 design

Stiffening ring: $\Delta f / \Delta P$ minimized

Chimney 22 cm²~35 W at 1.8 K about E_{peak} =45 MV/m at Q₀=3.5 10⁹

106 mm beam tube: Allow propagation of lowest TM₁₁₀ mode: *HOM studies*

> 3 pick-up antennas to measure HOM polarization

HZDR cathode insert and choke cell design:

Proven system Cathode exchange developed with HZDR

Blade tuner with motor and piezo tuner: *Microphonics compensation*

 0.4λ cell + full cell:

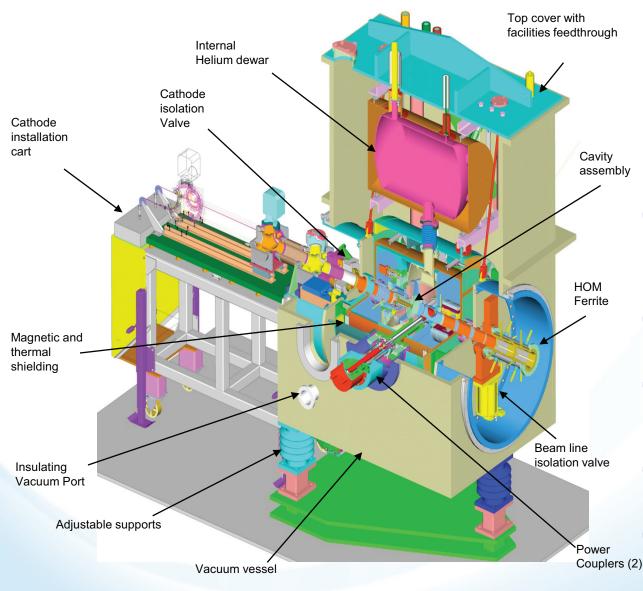
Optimized emission phase

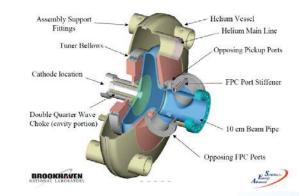
2xCW modified TTF-III Coupler: $Q_{ext} 3.6 \cdot 10^{6}$ for up to I_{avg} =4 mA, 10 kW each Study 2 coupler operation

Brookhaven Science Associates August 27, 2013

Gun1 parameters and status

- The cavity is being fabricated, processed and vertically tested at JLab.
- The cold mass including a SC solenoid and a beam tube HOM absorber is assembled at JLab as well.
- First horizontal tests, module mounting and first beam tests will be done at HZB.
- The gun will be able to support 4 mA beam current.


Parameter	Cavity 1.1
$R/Q(\Omega)$	150-149.5
$E_{\rm peak}/E_0$	1.5-1.45
$E_{\rm cathode}/E_0$	1-0.58
$H_{\text{peak}}/E_{\text{peak}} \text{ (mT/(MV/m))}$	2.2
$\Phi_{\text{launch}}(E_{\text{kin,max}})$ (deg.)	60-50
E_{launch} (MV/m)	26-13.3
$E_{\rm kin}$ (MeV)	2.6
k _{cc} (%)	1.6
Q_{ext}	$3.6\cdot 10^6$
$f_{1/2}({ m Hz})$	185
P_{forward} (kW)	8.4
Δf_{peak} (Hz)	20 (expected)



Stacked Cavity with beam tube

704 MHz SRF gun for BNL's ERL

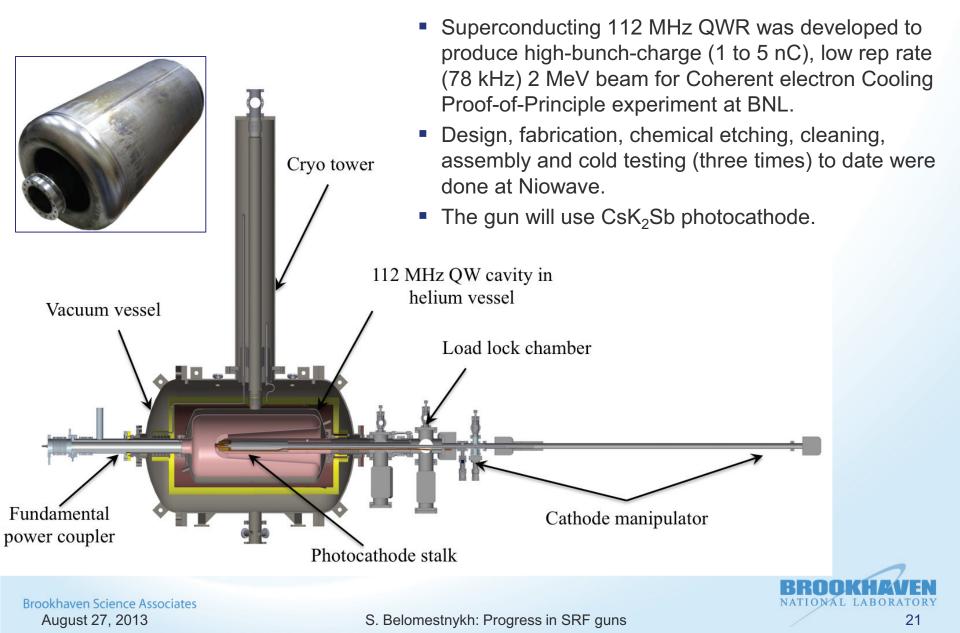
- The 704 MHz elliptical half-cell SRF gun will produce an electron beam from a multi-alkali photocathode illuminated by a synchronized laser with rep. rate of up to 9 MHz.
- The goal is to demonstrate average beam current of 300 mA and bunch charge of 3.5 nC at 2 MeV.
- Its two Fundamental Power Couplers (FPCs) are capable to deliver 1 MW of RF power to a 500 mA electron beam at an energy gain of 2 MeV.
- HOM damping is provided by an external beamline ferrite load with ceramic break.
- A HTS solenoid is housed inside the cryomodule.

Brookhaven Science Associates August 27, 2013

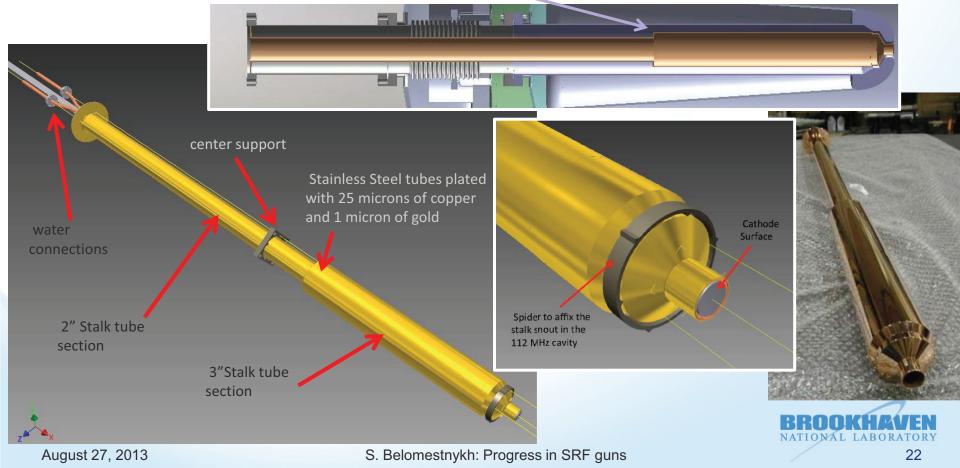
704 MHz SRF gun status

- Prior to assembly into the gun cryomodule, the two FPCs were conditioned off-line in standing wave mode with full reflection at variable RF phase. Maximum power was kW in CW (administrative limit).
- The gun cryomodule was assembled last year and is installed in the ERL block house. Its 1 MW CW klystron, cryogenic system and other ancillary systems are fully operational.
- The initial commissioning of the gun without a cathode is complete with the gun cavity achieving 2 MV (the design voltage) and 220 kW of RF power in CW mode. In pulsed mode, with a 0.7 ms pulse duration and 1 Hz repetition rate, the RF power was up to 400 kW.
- Currently the SRF gun is being conditioned with a copper cathode.
- The next step will be to test it with a high quantum efficiency multi-alkali photocathode and generate first beam (October/November).

Brookhaven Science Associates August 27, 2013


Quarter Wave Resonator SRF guns

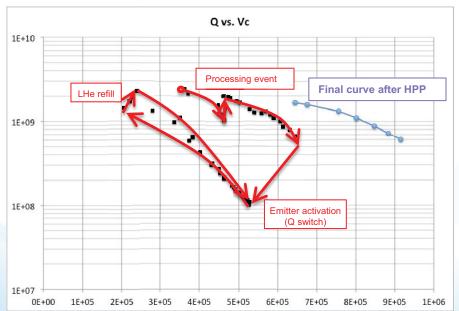
	BNL	U. W.	NPS
Frequency [MHz]	112	200	500
Beam tube aperture [cm]	10	10	6.35
Cavity diameter [cm]	42	60	24
Cavity length [cm]	110	50.3	20.3
Beam kinetic energy [MeV]	2	4	1.2
Peak electric field [MV/m]	38	53	51
Peak magnetic field [mT]	73	80.4	78
Peak cathode field [MV/m]	2.63	1.31	1.8
Geometry factor [Ohm]	38	85	125
R/Q [Ohm]	126	147	195
Q ₀ (no cathode, 4.5 K)	3.7 × 10 ⁹	3.3×10 ⁹	1.2×10^{9}


Brookhaven Science Associates August 27, 2013

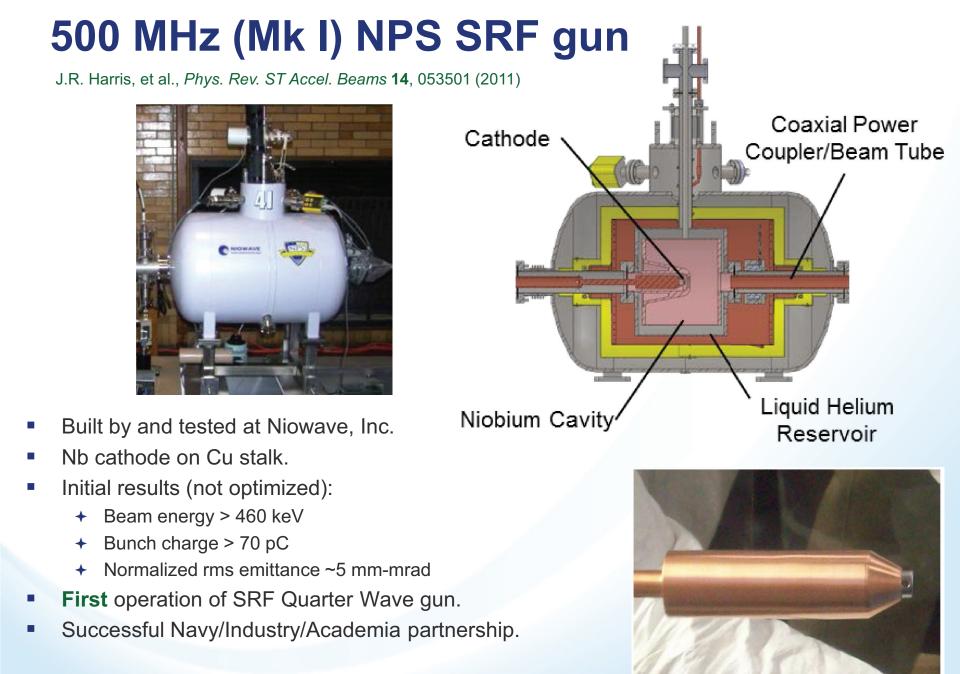
112 MHz QWR SRF gun

Cathode stalk design

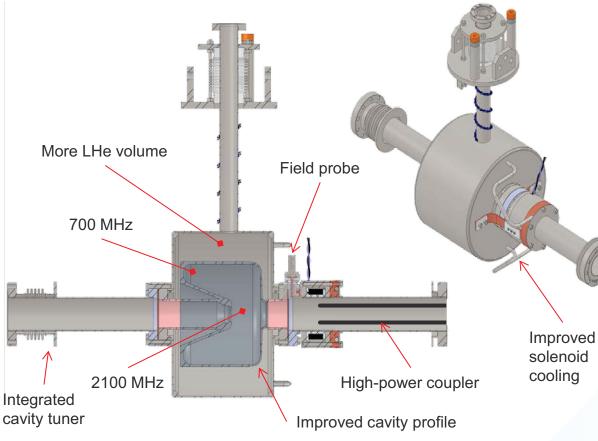
- The cathode stalk is a hollow center conductor of the coaxial line formed by the stalk and the cavity.
- The stalk is shorted at one end and is approximately half wavelength long. It will be permanently installed in the gun.
- A step at λ/4 from the short creates a quarter-wave impedance transformer and reduces RF losses in the stalk from ~65 W to ~25 W.
- The gold plating is aimed to reduce radiation heat load from the RT stalk to the cold (4.5 K) niobium.
- A small cathode puck is inserted inside the stalk and can be replaced when necessary with a new one.


112 MHz SRF gun test results & plans

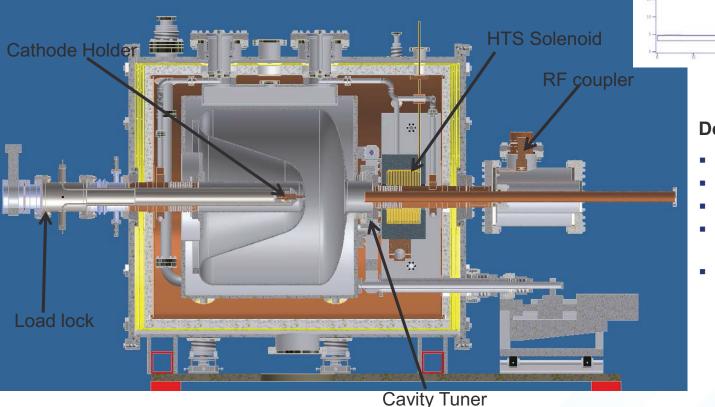
Brookhaven Science Associates

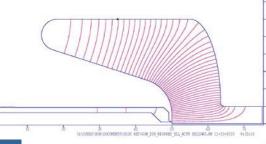

August 27, 2013

- The last cold test of the gun (in a new cryostat) w/o a cathode was successfully completed at Niowave last February.
- The gun reached 0.92 MV, limited by insufficient radiation shielding at Niowave.
- With no radiation shielding issue in the RHIC tunnel we should be able to reach higher gun voltage.
- The gun is currently in the RHIC tunnel, being prepared for installation into its final location. Testing at BNL will begin later this year / early next year.



700 MHz (Mk II) NPS SRF gun




TUPSO08, WEPSO83

- This follow-on design includes a number of improvements over the Mark I design.
- The gun is presently under testing at Niowave.
- It was conditioned to 500 kV cavity voltage, accelerated electron bunches to 260 keV, generated bunch charge >35 pC from a Nb cathode and UV laser.
- A single FE tip (tungsten) was tested and produced 100 nA average beam current.
- After testing at Niowave is complete, the gun will be shipped to Los Alamos, where it will be installed it in the LEDA tunnel for further testing.
- Studies at LANL will focus on increasing the operating gradient; measuring beam properties as a function of various parameters; and testing high-QE cathodes.
- This performance information will be needed to design the next generation of quarter-wave SRF guns with significantly increased performance

WiFEL 200 MHz SRF gun

Design parameters

- Cathode field: 40 MV/m
- Kinetic energy: 4 MeV
- Bunchcharge: 200 pC
- Normalized transverse emittance: 1 mm-mrad
- Average beam current: 1 mA

- Low frequency allows operation at 4.2 K; QWR geometry chosen to reduce the size of the cavity.
- Goal: to demonstrate single bunch beam dynamics and operation of the SRF gun.
- Low repetition rate drive laser allows option of using doubled or tripled Ti:Sapphire laser.
- Cu cathode will be used for initial operation: little chance of cavity contamination from evaporated cathode material; cathode will not degrade over time like semiconductor; no cathode preparation chamber needed.
- The first beam was generated on August 1, 2013; results will be reported at NA-PAC'13.

Summary

- SRF photoinjectors have made significant progress during the last several years.
- Several guns generated their first beams.
- First in the world FEL lasing was achieved with an at HZDR.
- ELBE gun demonstrated feasibility of the SRF gun concept with a normal-conducting cathode. Cs₂Te demonstrated very good performance with life time of ~1 year. O degradation of the cavity performance was noticed.
- For high average current / high bunch charge operation CsK₂Sb is preferred as it can operate with green lasers (unlike UV lasers needed for the Cs₂Te), which makes it easier to build laser/optics systems.
- Other photocathodes are being developed, most notably diamond-amplified.
- Several QWR guns were developed with three producing beams already. These guns are very promising for high bunch charge operation.
- Thus far SRF guns generated bunch charges up to ~100 pC. The average beam currents are still below 1 mA. More efforts are needed to boost these parameters.
- The field is very active. More experiments are coming soon, promising new and exciting results.

Acknowledgement

I would like to thank the following colleagues for sending me slides, description of their projects and recent results:

Jochen Teichert (HZDR) Kexin Liu (Peking University) Axel Neumann (HZB) Richard Swent (NPS) John Lewellen (LANL) Robert Legg (JLab)

Brookhaven Science Associates August 27, 2013