Experimental Studies of Echo-Enabled Harmonic Generation FEL

Zhentang Zhao Shanghai Institute of Applied Physics, CAS, China

FEL 2013 | Manhattan, USA

35th International Free-Electron Laser Conference August 26-30, 2013

Outline

Introduction

- Echo experiments at SLAC
- Echo experiments at SINAP
- Cool-HGHG experiment plan
- Summary

Ultra-small and Ultra-fast

Ultra-Fast

Short wavelength≻Ultra fast

Fully coherent

b

High-gain FELs

Echo-enabled Harmonic Generation (EEHG)

G. Stupakov, PRL, 2009;

Density

D. Xiang, G. Stupakov, PRST-AB, 2009

Echo-Enabled Harmonic Generation (EEHG)

- First laser to generate energy modulation in electron beam
- First strong chicane to split the phase space
- Second laser to imprint energy modulation
- Second chicane to convert energy modulation into density modulation

HGHG and EEHG

Phase space at the entrance to the radiator

Remarkable up-frequency conversion efficiency: $b_n \sim n^{-1/3} \longrightarrow$ Fully coherent soft X-ray

HGHG experiments

EEHG Experiments

Zhao, Z. T. & Wang, D. FEL2010 Xiang. D. *et al, PRL (2010)* Xiang. D. *et al, PRL (2012)* Zhao, Z. T. *et al, Nphoton (2012)*

Planed Experiments: FLASH@DESY, FERMI@Elettra, NGLS@LBNL, SXFEL@SINAP

ECHO-3,4 at NLCTA

- > Additional lianc to boost beam energy from 60 MeV to 120 MeV
- > 3 chicanes + 3 undulators
- Quadrupoles, correctors, power supplies
- Laser systems and laser transport
- > OTR, YAG, UV spectrometer, DAQ

First unambiguous ECHO signal @NLCTA

D. Xiang et al., PRL, 2010; featured in Nature Photonics "News & Views"

In good agreement with theory

ECHO-7 at NLCTA

➢ In order to confirm the main advantage of EEHG over HGHG, a radio-frequency (RF) transverse cavity (TCAV1) is installed in the NLCTA beamline to increase the slice energy spread by 1 order of magnitude (works as a laser heater).

➤TCAV2 at the end of the beamline is used for measurements of the beam longitudinal phase space and laser energy modulations.

D. Xiang et al., PRL, 2012

Echo Experiments at SINAP

SDUV-FEL is a test facility for seeded FELs

 \rightarrow Originally designed for HGHG

 \rightarrow With minor modification, it is now for a variety of seeded FEL schemes It has successfully carried out the HGHG, cascaded HGHG, and EEHG experiments

SDUV-FEL building

Tunnel

Layout of EEHG at SDUV-FEL

Main parameters (EEHG@SDUV)

Parameters	Measurement	
Beam energy	135MeV	
Beam energy spread (projected)	0.1-0.2%	
Normalized emittance	4~5mm-mrad	
Bunch charge	100рС	
Seed laser wavelength	1047nm	
Seed laser pulse length	8ps	
Seed laser power (1, 2)	0~15MW	
Modulator1 (EMU65)	10*6.5cm	
	B=0~0.3T	
Modulator2 (PMU50)	10*5cm	
	Gap=12~80mm	
R56 of dispersion section 1	1~70mm (16A)	
R56 of dispersion section 2	1~10mm (4.2A)	
Radiator: PMU25	6*60*2.5cm	

Beam energy and energy spread

Parameters measurement

中国科学院上海应用物理研究府

First lasing of an EEHG-FEL

Z.T. Zhao et al., Nature photonics 6, 360 (2012)

HGHG vs. EEHG: Spectrum

$$\lambda_{\text{HGHG}} = \lambda_s (1 + hR_{56}) / k,$$

$$\lambda_{\text{EEHG}} = [1 + h(R_{56}^{(1)} + R_{56}^{(2)})] / [\frac{n}{\lambda_{s1}} + (1 + hR_{56}^{(1)})\frac{m}{\lambda_{s2}}],$$

HGHG vs. EEHG: Bunching factor

Upgrade SDUV-FEL for Echo-10, 20

- Beam: 165-175MeV, ~200 pC, 3~8ps
- Seed laser 1: 523 nm, 8.7 ps (FWHM), 60 μJ
- Seed laser 2: 2500 nm, ~100 fs (FWHM), 40 μJ
- Radiator: 40mm*80 periods, with variable gap.
- Output wavelength: 800 nm-200nm.
- The echo signal occurs at the wave number:
- \succ k_{EEHG}=nk₁+mk₂, n and m are integers.

ADC40 (new radiator for EEHG)

40mm*80 periods, with variable gap

Ti sapphire laser as the 2nd seed laser of EEHG

- Coherent, Legend
- Wavelength:750~860nm
- Repetition: 1kHz
- Power: 3.5W
- Pulse Width: 35fs,130fs,1ps

OPA: 1160nm~2600nm, 70mW~80mW

Ti sapphire laser as the 2nd seed laser of EEHG

pump laser@800nm

OPA output@1200nm

Seed laser transfer line

- Femtosecond level accuracy;
- Combine system for both 800nm and OPA laser (1160nm~2600nm);
- > Three injection ports for different experiments;

Optical diagnostics and Spectrometers

Echo-5@SDUV-FEL

The central wavelength of HGHG and EEHG will be different because wavelengths of two seed lasers are different:

Wavel ength nm

$$\lambda_{s1} = 523nm, \lambda_{s2} = 2500nm, for m=10, n=-1, a = 10 - \frac{\lambda_{s2}}{\lambda_{s1}} \approx 5.2$$

Echo-7@SDUV-FEL

The central wavelength of HGHG and EEHG will be different because wavelengths of two seed lasers are different:

$$\lambda_{s1} = 523nm, \lambda_{s2} = 2500nm, for m=12, n=-1, a = 12 - \frac{\lambda_{s2}}{\lambda_{s1}} \approx 7.2$$

Echo-9@SDUV-FEL

The central wavelength of HGHG and EEHG will be different because wavelengths of two seed lasers are different:

$$\lambda_{s1} = 523nm, \lambda_{s2} = 2500nm, for m=14, n=-1, a = 14 - \frac{\lambda_{s2}}{\lambda_{s1}} \approx 9.2$$

Echo-10@SDUV-FEL

The central wavelength of HGHG and EEHG will be different because wavelengths of two seed lasers are different:

$$\lambda_{s1} = 523nm, \lambda_{s2} = 2500nm, for m=15, n=-1, a = 15 - \frac{\lambda_{s2}}{\lambda_{s1}} \approx 10.2$$

Future plan@SDUV-FEL

Cooled-HGHG

Haixiao Deng*, Chao Feng, Phys. Rev. Lett, 111 (2013) 084801

Future plan@SDUV-FEL

Cooled-HGHG

Haixiao Deng*, Chao Feng, Phys. Rev. Lett, 111 (2013) 084801

Cooled-HGHG

- The bunching factor of cooled-HGHG has no relation with the initial beam energy spread, but will be significantly degrade for large emittance.
- For the nominal parameters of SXFEL, the bunching factor of cooled-HGHG is close to that of EEHG.
- The configuration of cooled-HGHG is much simpler than EEHG.

Gain curve for SXFEL

Haixiao Deng*, Chao Feng, Phys. Rev. Lett, 111 (2013) 084801

> 中國科学说上海运副物理研究所Future plan for seeded FELs@SDUV-FEL

Experiment proposal at SDUV-FEL

SINAP

Alternatively, we may break a chicane and transversely shift all the followed elements in the accelerator tunnel, as proposed in the paper.

Runching factor

Experiment proposal at SDUV-FEL

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

SINAP

		Phase snace	Duitening factor
Parameter	Value		0.5
beam energy	165MeV	323.1	Cooled−HGHG η=3 Cooled−HGHG η=2 Cooled−HGHG η=2 Cooled−HGHG
Slice energy spread	16keV	323.0 ≻ 322.9	- E.0 factor
Slice emittance	2 mm-mrad	322.8	pund g
Peak current	100A	322.7	
Seed wavelength	2400 nm	-3 -2 -1 0 1 2 3 θ [rad]	harmonic number
Seed pulse length	100 fs (FWHM)	5×10 ⁴	10
Seed peak power	6 MW	4×10 ⁴	
Dispersion	2	۵ 2×10 ⁴	
Transverse gradient	14m ⁻¹	1×10 ⁴	
Radiation wavelength	120 nm	0 50 100 150 200 s [μm]	118 119 120 121 122 123 λ [nm]
		20th harmonic	spectrum
		radiation pulse	

Summary

- EEHG has high up-conversion efficiency such that one may generate fully coherent soft x-rays directly from an ultraviolet seed laser.
- The principle of EEHG has been demonstrated at SLAC and SINAP at low harmonic numbers, the first lasing of EEHG is obtained at SDUV-FEL.
- Novel methods have been developed at SINAP and SLAC for the accurate measurement of slice energy spread and energy modulation amplitude induced by the seed laser, which are very important parameters for seeded FELs.
- Echo-20, Cooled-HGHG and even higher harmonics seeded FEL experiments in the near future.

ACKNOWLEDGMENTS

We would like to thank L. H. Yu (BNL) and G. Stupakov for helpful discussions and comments.

Thank you for your attention

谢谢!

IN COLUMN THE