

STABLE OPERATION OF HHG-SEEDED EUV-FEL AT THE SCSS TEST ACCELERATOR

<u>H. Tomizawa^{1, 2}, T. Hara^{1, 2}, K. Ogawa¹, T. Togawa¹, H. Tanaka^{1, 2}, T. Tanaka¹, </u>

M. Yabashi^{1, 2}, T. Ishikawa¹,

S. Matsubara², Y. Okayasu², T. Togashi², T. Watanabe²,

M. Aoyama³, K. Yamakawa³, Eiji J. Takahashi⁴, K. Midorikawa⁴,

T. Sato⁵, A. Iwasaki⁵, S. Owada⁵, K. Yamanouchi⁵,

¹ RIKEN-SPring-8

² Japan Synchrotron Radiation Research Institute

- ³ Japan Atomic Energy Agency
- ⁴ RIKEN-RAP
- ⁵ The University of Tokyo

Outline

Introduction of HHG-seeded FEL

Seeded FEL with HHG (2010)

- Improvement of "effective" hit ratio of the seeded FEL operation by electro-optical sampling (2012)
- Summary

Self-amplification of spontaneous emission (SASE)

* FLASH (Germany), SCSS (Japan), LCLS (USA), SACLA (JAPAN), ...

SCSS EUV-FEL Accelerator

- SCSS accelerator (250MeV, 50-60nm)
 - 250 MeV Linac + In-vacuum undulator
 - Development & pilot user experiments of HHG-seeded FEL

Fluctuating spectra – SASE operation at SCSS

SASE-FEL starts up from noise

Energy spectra and temporal profiles are fluctuating shot-to-shot! (originated from the SASE process)

External seeding scheme is one of the solution to suppress shot-noise for reliable full-coherent light source (user operation).

Seeded FEL with HHG (Higher-order Harmonic Generation)

We have to synchronize independent pulse systems (HHG pulse & e-bunch).

Overlapping in 6D phase space under compressed both of HHG-pulse and e-bunch.

Higher-order Harmonic generation in Xe

HHG and its transport

6D phase space overlap for seeded FEL

	Size (x, y) FWHM	Time _{FWHM}	Wavelength (Energy)	To kill timing jitter,
Electron bunch	~ 500 µm	300-600 fs	61.7 nm	both pulse/bunch covers each other!
HHG seed pulse	~ 1 mm	~ 50 fs	61.7 nm	

6D Phase Space

Centroid positions (Transverse size):

X. Y

- **Momenta**
- (Divergence): $\theta x, \theta y$
- Time : *t*
- **Energy** (Central
- Wavelength): E

6D phase space overlap for seeded FEL

	Size (x, y) _{FWHM}	Time FWHM	Wavelength (Energy)	To kill timing jitter,
Electron bunch	~ 500 µm	300-600 fs	61.7 nm	both pulse/bunch covers each other
HHG seed pulse	~ 1 mm	~ 50 fs	61.7 nm	

6D Phase Space

Centroid positions (Transverse size): X, Y Momenta (Divergence): θx , θy Time : *t*

Energy (Central Wavelength): *E*

6D phase space overlap for seeded FEL

	Size (x, y) FWHM	Time FWHM	Wavelength (Energy)	To kill timing jitter,
Electron bunch	~ 500 µm	300-600 fs	61.7 nm	both pulse/bunch covers each other!
HHG seed pulse	~ 1 mm	~ 50 fs	61.7 nm	
<i>6D Phase Space</i> Centroid positions (Transverse size):				

Seeded FEL with HHG

- Full (Temporal and Spatial) coherent
- Monochromatic spectra
- Power stabilization
- Jitter free synchronization
- Compact undulator design

2.0 Schematic picture 1.5 0.0 59.0 59.5 60.0 60.5 61.0 Wavelength [nm]

Besides, higher contrast ratio (S/N) against SASE background noise!

Comparison of Seeded-FEL facilities

	USA LCLS SLAC	Japan XFEL/SPring8 RIKEN	Japan SCSS/SPrng8 RIKEN	FLASH DESY-II (sFLASH)	FERMI Itary
Electron Energy	14 GeV	14 GeV	0.25 GeV	1.25 GeV	10~20GeV
Wavelength	0.15 nm	0.06 ~ 0.15 nm	160 ~ 53nm, 30 nm (SHG)	30 nm	260 ~ 4 nm
Rep. Rate	120 Hz	10 Hz	30 Hz	10 Hz (Burst 1 MHz)	10 Hz (Burst 3 MHz)
Pulse energy	~ 200 μJ		~ 30 μJ	??	~ 10 μJ
Method	Self-seeding	Self-seeding	Direct HHG seeding	Direct HHG seeding	260 nm HGHG
Year of Seeding operation	2012	2013-2014??	2006	2012	2012

Sweden MAX-lab: HHG direct seed + HGHG China SINAP: Shanghai DUV-FEL (EEHG)

Our history of HHG-Seeding Developments

Date	Event	Condition	Reference
June 2006	The first SASE amplification with our new machine concept	250 MeV, 49nm	
Dec. 2006	Seeding at 160 nm	150 MeV, HHG 5 th	G. Lambert et al., Nat. Physics 4, 296 (2008)
Sept. 2007	SASE saturation	250 MeV, 50~60nm	T. Shintake et al., Nat. Photonics. 2, 559 (2008)
Oct. 2010	Seeding at 61, 53 nm Hit rate: ~0.3% Pulse energy : ~2 µJ	250 MeV, 300 fs HHG 13,15 th	T. Togashi, et al., Opt. Exp. 19, 317 (2011)
March 2011	The first test of Arrival time timing btw. e-bunch and HH sampling)	H. Tomizawa, BIW2012, Newport News, VA (2012)	
July 2012	Seeding at 61 nm with EO sampling Hit rate: ~30% Pulse energy : ~20 µJ	250 MeV, 600 fs HHG 13 th	H. Tomizawa, et al., LINAC2012, Tel-Aviv (2012)

Task force in our collaboration for HHG-seeding

Supports for this projects:

- RIKEN/JASRI XFEL project (SACLA)
- SCSS test accelerator operation team (Engineers)

Financial supports :

- RIKEN extreme photonics
- MEXT X-ray free electron laser utilization research (The University of Tokyo)
- Japan Atomic Energy Agency, Quantum Beam Science Directorate

A. Iwasaki

K. Ogawa, Y. Okayasu, H. Tomizawa, T. Togashi, T. Sato, S. Owada

T. Watanabe, E. J. Takahashi, S. Matsubara

Outline

- Introduction of HHG-seeded FEL
- Seeded FEL by HHG (2010)
- Improvement of "effective" hit ratio of the seeded FEL operation by electro-optical sampling (2012)
- Summary

Seeding results at 61 nm in 2010

61nm-2nJ HHG @ Undulator

T. Togashi *et. al.*, Optics Express, **19** 317 (2011)

Outline

Introduction of HHG-seeded FEL

Seeded FEL by HHG (2010)

 Improvement of "effective" hit ratio of the seeded FEL operation by electro-optical sampling (2012)

Principle of EOS (Electro-Optic Sampling)

Improvement of Hit Rate (~2012)

61nm-2nJ HHG@Undulator

Measurement of arrival timing with EO-sampling for feedback (2012 April)

- EO prove laser was produced from HHG driving laser for seeding.
 - High-dispersion glass-rod (n = 1.96, L = 20 cm) for a linear chirp pulse (175 fs \rightarrow ~14 ps)

Relative timing-drift monitored by EOS

The arrival-time drift is calculated automatically with the computer program in terms of the peak position of the EOS signals.

The arrival-time drift of electron bunch : ~50 ps for ½ day

Performance of the Active feedback system for the timing jitter

Relative timing drift is actively compensated by using the EO signal

A mode-locked oscillator (238-MHz) was synchronized to a 238-MHz master clock of SCSS by feedback locking of the cavity length.

Seeded FEL Performances (2012) - Single shot spectrum -

Seeded FEL Performances (2012) - Long term stability -

Seeded FEL Performances (2012) - Long term stability -

Seeded FEL Performances (2012)

The correlation data plot between the normalized intensity and central wavelength for 10,000 shot data

Normalized intensity

Improvements of FEL Performances $(2010 \rightarrow 2012)$

Previous result (2010)

This result (2012)

w/o feedback

w/ feedback

 The seeding operation was only obtained less than 10 minutes.

By using the EOS-based timing-drift system, the HH seeded FEL succeed to continuously operate about a half day which is the machine time of SCSS accelerator with 20-30% hit rate.

Summary

- Seeded at 61.5 nm (13th HH), 53.3 nm (15th HH)
- Introducing EOS-feedback, continual operation
- Dramatically improve seeding (2010)
- short term of timing drift or jitter < 1ps

		v
	2010	2012
	(w/o feedback)	(w/ feedback)
FEL pulse energy	1.3 µJ (max.)	20 µJ (max.)
Effective hit rate	0.3 %	20 – 30 %
FEL gain	x 650	x 10 ⁴
Continual operation	< 10 min.	> 1/2 day

We observed 2nd order seeded FEL (@30nm).

Spectrum of 2nd harmonic seeded FEL lased at 30.8 nm

Contrast ratio is significantly improved to 80 against SASE background.

Summary

- We have succeeded a seeding effect of an FEL amplifier working in an EUV region with a wavelength of 61.5 nm(13th HH), 53.3 nm(15th HH).
- We improved output of 20 µJ with 20 30 % hit rate with timing control of EOS. Seeding condition have kept for half a day.
- Contrast ratio was improved more than 5 times (2010->2012).
- We are planning to generate shorter wavelength of seeded FEL (13 nm - Water window) at SACLA.
 Adjustability of FEL wavelength .

Tunable operation of seeded FEL

For tunable operation of seeded FEL,

a continuum HHG generated

by mixing multicycle two-color laser fields is proposed.

(Ti:S, 800nm + OPA, 1300nm)

Eiji J. Takahashi, et al. PRA 104, 233901 (2010)

HHG Spectrum at cutoff region

Machine Layout of SCSS+

Machine Layout of SCSS+

Accelerator components moving to BL1@SACLA (SCSS+)

- Dedicated beamline to EVU & SXR regions
- Start with 400 MeV & 30~50 nm,
 to be extended to 1.4 GeV & 3 nm