Double Stage Seeded FEL With Fresh Bunch Injection Technique at FERMI

Enrico Allaria
on behalf of the FERMI commissioning team

Outline

- Seeded Free Electron Lasers
- Benefits and possibilities
- Seeded FEL facilities
- High Gain Harmonic Generation
- Bunching and HGHG optimization
- Double stage HGHG
- HGHG experimental results at FERMI
- Coherence properties
- Spectral characterization
- Conclusions

Elettra
Sincrotrone
Trieste

Why seeding?

FERMI in HGHG mode

SASE can give access to very powerful pulses but there is little margin to control pulse quality. In some cases this may be a limitation.

Seeding, self-seeding, and other methods (i-SASE, p-SASE) have been studied to have a better control of the process and improve the FEL properties.

Seeded high gain FELs

Seeding controls the start-up of the FEL pulse within the electron bunch and helping to produce:

- Temporal coherence of the FEL pulse.
- Control of the time duration, wavelength and bandwidth of the coherent FEL pulse.
- Close to transform-limit pulses that provide excellent resolving power without monochromators.
- Natural synchronization of the FEL pulse to the seed laser.
- Reduction in undulator length needed to achieve saturation.
- High peak flux and brightness.

Benefits of seeding strongly depend on the electron beam quality. Seeded FELs are more sensitive to electron beam energy and phase space distortion than SASE.

Seeding sources

A suitable seeding source for FELs must be a coherent and stable source in the wavelength range where one is interested to operate the FEL or at longer wavelength if one use the harmonic conversion in the FEL.
Possible sources are:

1. An external laser (visible to UV)

- Prebunched by the seed laser, the FEL coherently emits at a higher harmonic in a radiator undulator (CHG) followed by high gain (HGHG, EEHG).

2. Harmonic emission produced by lasers, HHG (UV-VUV)

- Weak coherent pulses are amplified by the FEL process.

3. A free electron laser (IR-X-ray)

- Radiation from a FEL is used as a seed for another FEL (self seeding, two stages HG, oscillator seeding, ...)

High Gain Harmonic Generation

The HGHG scheme of L.H. Yu was proposed after preliminary works** on FEL harmonic generation to solve the lack of seeding sources at short wavelengths.

compressor

Compared to SASE devices, the HGHG approach is more compact and produces nearly fully temporally coherence output; spectral parameters easily controlled (e.g., pulse length, chirp).

Elettra
HGHG mechanism
Sincrotrone
Trieste

first dispersive section

Dispersive section

Radiator

Enrico Allaria - enrico.allaria@elettra.eu |

The HGHG cascade

 A way to extend the HGHG to higher harmonics is to repeat several times the process in various stages.

In a two stage, HGHG cascade FEL, the first stage generates a high quality FEL pulse at shorter wavelength (e.g., 20 nm).
This pulse then seeds the second HGHG stage, creating coherent bunching, and eventual FEL output at an even shorter wavelength (e.g., 4 nm).
The "fresh bunch" technique is used to have the seeding always occurring in a part of the electron beam that has not been spoiled by previous FEL interaction.

In this configuration an FEL is used as a seed for the second FEL. The scheme can in principle be repeated to reach even shorter wavelengths.

FERMI FELs

FEL-1, based on a single stage high gain harmonic generation scheme initialized by a UV laser, covers the spectral range from $\sim 80 \mathrm{~nm}$ down to 20 nm .

FEL-2, in order to be able to reach the wavelength range from 20 to $\sim 4 \mathrm{~nm}$ starting from a seed laser in the UV, is based on a double cascade of harmonic generation. The nominal layout uses a magnetic electron delay line in order to improve the FEL performance by using the fresh bunch technique. Other FEL configurations are also possible in the future (e.g., EEHG).

FERMI FEL-1 results

Successful operation of HGHG in the VUV has been demonstrated and reported.

Currently FEL-1 is operated for user dedicated beamtimes and first results are coming out.

Figure 3 | Measured beam profiles and double silit diffraction pattern. a, FEL spot size measured on a YAG screen positioned 52.4 m downstream from the radiator exit. The main signal is well reproduced by a Gaussian profie and is characterized by a second moment of $\sim 2 \mathrm{~mm}$ in both the vertical and horizontal
directions. \mathbf{b}, FEL spot size measured on a second YAG screen positioned 72.5 m downstream from the radiator exit. In this case the measured horizontal and vertical beam © ©mensions are 2.6 mm and 2.4 mm , respectively. c.d, Image and projection of the interference pattern recorded on the second YAG screen when the FLL beam propagates through two $20 \mu \mathrm{~m}$ sitts, separated by 0.8 mm , placed $\sim 8.5 \mathrm{~m}$ before the screen.

nature photonics

Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet
E. Allaria et al.*

Figure 4 | Single-shot and multi-shot spectra at 32.5 nm . a, Measured FEL and seed laser spectrum (dashed red and continuous blue lines respectively). b. Acquisition of 500 consecutive FEL spectra.

- Activity on FEL-2 started in May 2012 with first FEL emission from the first stage.
- In October 2012 we successfully operate the full, two stage cascade using the fresh bunch technique and produced narrow bandwidth, reasonably low jitter pulses down to 10.8 nm wavelength (1.0 GeV electron beam energy).
- In March 2013 we extended the short wavelength limit down to $8.4 \mathrm{~nm}(1.2 \mathrm{GeV})$ and in June 2013 to $4.7 \mathrm{~nm}(1.4 \mathrm{GeV})$ with significant coherent pulse energies (>= $1 \mu \mathrm{~J}$) to wavelengths as short as 4.3 nm .
Used electron beams

First FEL-2 operation has been with $\mathbf{1 ~ G e V}$ electron beam with moderate compression (single bunch compressor). Electron beam current ~250 A.

To achieve shorter output wavelengths, the electron beam energy was increased first to 1.2 GeV and then to 1.4 GeV .
Peak current has been in the range 300-500 A depending on the used compression scheme.
Despite the quite good current profile, we have seen that in some cases the FEL may be affected by the
quadratic curvature of the electron beam phase in some cases the FEL may be affected by the
quadratic curvature of the electron beam phase space.
Elettra

FEL bandwidth and wavelength stability may be compromised in case of a large and not controlled electron beam energy chirp or modulation.

First evidence of seeding on second stage

After the first evidence of lasing at the $3^{\text {rd }}$ harmonic of the 6th $(260 \rightarrow 43.3 \rightarrow 14.4 \mathrm{~nm})$ we focused our efforts to shorter wavelength.

Most of October '12 results have been obtained at 10.8 nm that has been produced both as the $4^{\text {th }}$ harmonic of the $6^{\text {th }}(260 \rightarrow 43.3 \rightarrow 10.8 \mathrm{~nm})$ and the $3^{\text {rd }}$ harmonic of the $8^{\text {th }}(260 \rightarrow 32.5 \rightarrow 10.8 \mathrm{~nm})$.

After few days of operations in October we had the first evidence of seed-induced coherent emission from the second stage.
October '12 operations have been focused at $\sim 1 \mathrm{GeV}$ electron beam energy permitting operation of the FEL in the 15-9 nm spectral range.

Elettra
Sincrotrone
Trieste

FEL gain

FEL pulse 10.8 nm

Second stage at $3^{\text {rd }}$ harmonic of the $8^{\text {th }}(260 \rightarrow 32.5 \rightarrow 10.8 \mathrm{~nm})$.

Data fit well with an exponential curve characterized by a gain length of $\sim \mathbf{2 . 2 ~ m} . L_{g}=2.2 \mathrm{~m}$ can be obtained from a beam that has the characteristic of the one used for the experiment:
$\mathrm{I}=300 \mathrm{~A}, \mathrm{E}=1.0 \mathrm{GeV}, \sigma \mathrm{E}=600 \mathrm{keV}, \varepsilon=1 \mathrm{~mm}$ mrad, $\beta=15 \mathrm{~m}$

Fresh bunch: Seed delay

Because of the fresh bunch scheme, the second stage radiation is produced few hundreds of fs toward the head of the bunch.
While scanning the seed delay, there is a region where radiation from first stage is produced but not from the second stage.

The results of the scans of the seed laser delay suggest that second stage radiation comes from the fresh part of the beam and not from the one prebunched by the seed laser.

The electron beam delăy line is used to move the first stage FEL pulse ahead toward fresh electrons. This is a critical parameter for FEL optimization. As expected, for small delays the second stage seeding is not efficient (electrons partially involved on first stage).
For too large a delay, the second stage is moved outside the good region of the beam.

The value of the delay line has an impact also on the final FEL spectrum (wavelength and bandwidth).

Effect of the e-beam delay line

As with FEL-1, FEL-2 spectra can be very narrow, clean and stable. In the displayed data (10 nm), after filtering out bad data points (based on electron beam parameters) we have a wavelength stability of 2*10-4 with an average FEL bandwidth of $\mathbf{6}^{*} 10^{-4}$ (sigma).

Similar results have been obtained at 8 nm . At shorter wavelength, not enough single shot data have been collected yet.

| FEL spectral stability |
| :--- | :--- |

Coherent emission at shorter wavelengths

Coherent emission with FEL-2 has been obtained down to about 3 nm . Although very week single shot spectra have beam measured up to 4 nm and the good ones show narrow line ($\sigma \lambda / \lambda \sim 10^{-4}$). Real FEL gain is at the moment limited to about 4 nm due to the electron beam energy limit.

Larger energy per pulse would be accessible with brighter electron beam (higher peak current)

Enrico Allaria - enrico.allaria@elettra.eu I

Conclusions

Achieved results

A two stage harmonic generation FEL has been successfully operated with the fresh bunch technique up to a final harmonic upshift ratio exceeding 50.

FEL output pulse energies of $\sim 10 \mu \mathrm{~J}$ or greater has been achieved down to 5.2 nm .
Coherent emission levels of $1 \mu \mathrm{~J}$ down to 4.0 nm has been generated in the cascade configuration.

Near term plan

- Increase e-beam energy and brightness to improve performances at shorter wavelengths
- Improve output energy stability by:
- Decrease shot-to-shot jitter in electron energy and compression;
- Improve matching in undulator;
- Improve transverse phase space by reducing CSR and microbunching effects and residual dispersion in transport optics

Long term plan

FEL-2 user's operation will start in 2015.

Thank you!

www.elettra.eu

