CONTROL OF ELECTRON BEAM LONGITUDINAL PHASE SPACE WITH **A NOVEL COMPACT DE-CHIRPER** FOR PAL-XFEL

Heung-Sik Kang, Pohang Accelerator Laboratory

Contributors: MoonSik Chae, Juho Hong, Haeryong Yang, Changki Min, Taekyun Ha, Woul Woo Lee, Sung-Ju Park (PAL) K. Bane, Z. Huang, G. Stupakov (SLAC) P. Emma, Marco Venturini (LBNL)

August 26, 2013 FEL 2013

Heung-Sik Kang hskang@postech.ac.kr

Collaborative R&D with SLAC and LBNL

K. Bane, Z. Huang, G. Stupakov (SLAC)

P. Emma, Marco Venturini (LBNL)

Beam test with a prototype dechirper at Injector test facility at PAL on August 5th – 9th, 2013

Beam Test on Aug. 5 ~ 9, 2103

Korean 4-th generation Light Source: PAL-XFEL

PAL-XFEL

THEFT

0.1-nm Hard X-ray 10-GeV XFEL

- **Project Period: 2011 ~ 2015**
- Total Budget: 400 M\$
- Accelerator Length: 1.1 km

- Wavelength
 - Soft x-ray: 10 nm ~ 1 nm
 - Hard X-ray: 1.0 ~ 0.1 nm
 - Extendable to 0.06 nm
- Undulator Beamline
 - : 3 Hard X-ray / 2 Soft X-ray lines

Pohang Light Source (3 GeV /400 mA)

Building		
Linac Hall		780
	1. Assembly	10
	2. Linac	710
	3. BTL	60
Undulator Hall		250
XFEL Beamline		80
	1. Front-end	20
	2. Experiment hall	60
Total Length [m]		1110

PAL-XFEL Layout

Start-to-End Simulation for Hard X-ray FEL Line

After BC3

August 26, 2013 FEL 2013

Heung-Sik Kang hskang@postech.ac.kr

SASE Bandwidth vs. Energy chirp

BEG of Undulator with 200 k particles

August 26, 2013 FEL 2013

Heung-Sik Kang hskang@postech.ac.kr

Self-Seeding FEL Power vs. Energy chirp

A history of Corrugated Structure As a Dechirper

- ✓ A smooth-pipe as a dechirper was considered for PAL-XFEL (THOA4, FEL2011).
- A corrugated structure with flat geometry was selected for PAL-XFEL (TUPPP062, IPAC2012).
- ✓ "Dechirper R&D meeting" was held at Nara in Japan on 29 August 2012
- ✓ Dechirper R&D group was organized by Paul Emma in 2012
- $\checkmark\,$ PAL prepared a prototype of 1-m long flat geometry dechirper in 2012 and 2013
- Theoretical study for "corrugated structure with flat geometry" by K. Bane and G. Stupakov
 - K. Bane and G. Stupakov, NIMA, 690, 106 (2012)
 - Longitudinal wake for flat geometry, PRST-AB, 6, 024401 (2003)
 - Transverse wake for flat geometry was derived in 2013
- ✓ Beam test was done at ITF, PAL on 5-10 August 2013.
 - K. Bane, G. Stupakov (SLAC)
 - P. Emma, Marco Venturini (LBNL)

Why we choose Flat Geometry for Dechirper

Smooth pipe vs. Corrugated pipe

- Smooth, resistive pipe shows a large nonlinearity, while corrugated pipe shows linear
- If we use S-band accelerating structure, the total length required is approximately 16 times as corrugated pipe.

Round geometry vs. Flat geometry

- Required chirp is different for a different bunch length and charge →
 Round geometry dechirper lacks controllability
- Adjustable gap type of flat geometry \rightarrow better controllability
 - Wake reduces to a factor of $\pi^2/16$ from round geometry
 - Movable gap : 1 \sim 30 mm full gap
- Vertical offset control capability of the flat geometry makes it possible to minimize the effect of **dipole wake**.

Simulation of longitudinal wake for Soft X-ray FEL line (3.15 GeV, 200 pC)

Corrugated pipe with radius of 2.5 mm and L=20 m

Issues of Flat Geometry

	Round geometry with radius <i>a</i>	Flat geometry with half gap	Flat geometry with half gap 0.785 a
Longitudinal wake	1	$\pi^2/16 = 0.616$	1
Dipole wake	1	1 / 2.62 = 0.38	1
Quadrupole wake	0	1	2.6

- Effect of dipole wake is similar
- Flat geometry introduces quadrupole wake, which is not present at round geometry

Corrugation Parameters for Dechirper

	A Test module at PAL-ITF	PAL-XFEL Soft XFEL line
Beam energy, GeV	0.07	3.15
Half gap, a [mm]	4	2.5
corrugation period, p [mm]	0.5	1.0
corrugation depth , h [mm]	0.6	0.5
Wall distance, g [mm]	0.3	0.5
Width of plate [mm]	50	50
Length [m]	1	20
Gap of two plates [mm]	1 ~ 30	1 ~ 30

After Chemical Cleaning

DECHIRPER TEST AT ITF

Injector Test Facility

ITF Modulator / Klystron

ITF Tunnel

August 26, 2013 FEL 2013

One-meter long proto-type dechirper

- Upper and lower corrugation pates are independently movable.
- Vertical offset is variable

Dechirper Test at ITE (August 5-9 2013)

Emittance measurement (70 MeV, 0.2 nC)

gun phase & gun solenoid 스캔 결과

Wakefield Experiment and Beamline Layout at PAL-ITF

TCAV OFF

OFF CRES

- Beam size and centroids measured on YAG screens
- Spectrometer bend allows energy loss and energy spread measurements
- RF deflector allows time-resolved measurements
- Dechirper gap and offset are varied

Longitudinal Wakefield Chirp – Simulation & Measurement

Energy Loss vs. Dechirper Gap - Theory & Measurement

Four data sets are averaged (red points) with rms spread/√3 as error bar
 No free parameters used here

Dipole Wakefield – Simulation & Measurement

Dipole Wake vs. Dechirper Offset - Theory & Measurement

- Data are green points showing y-centroid kick on screen-5 vs. gap offset
 Measured kicks ~half of that expected (?)
- Higher-order dipole wake also fits well to theory (with 0.12-nC charge)

Quadrupole Wakefield – Simulation & Measurement

Emittance increase due to dipole wake (A Test module at PAL-ITF)

Elegant simulation for dipole wake (PAL-XFEL Soft-XFEL line)

100 $\beta_{\rm x}$ β_y 80 60 E) 3-m long dechirper $\beta_{\chi}, \beta_{\gamma}$ 40 20 365 370 375 380 385 390 S Twiss parameters--input: palrun.ele | lattice: PAL_XFEL_BC3_V12_SET3N.lte

Betatron phase between two quads: $\pi/6$

- Beam energy : 3.15 GeV
- Beam charge : 200 pC
- Bunch length (rms) : 8.7 um
- Dechirper length : 20 m
- Dechirper gap (2a) : 5 mm
- Betatron function : 20 m
- Transverse beam size (rms): 40 um

- Projected emittance growth appears

Betatron function at dechirper

Emittance increase due to dipole wake (PAL-XFEL Soft-XFEL line : 3.15 GeV)

Vertical offset control capability of the flat geometry is easy to minimize the emittance growth due to **dipole wake**.

August 26, 2013 FEL 2013

Heung-Sik Kang hskang@postech.ac.kr

Emittance increase due to quadrupole wake (PAL-XFEL Soft-XFEL: 3.15 GeV)

August 26, 2013 FEL 2013

Heung-Sik Kang hskang@postech.ac.kr

Elegant simulation of Qadrupole wake for PAL-XFEL Soft-XFEL line (3.15 GeV)

 \times

End of Linac with 200 k particles

Working as a Linearizer

- Measured bunch length (rms): 0.67 mm
- Quadratic wake seems to be effective if bunch length is smaller than a quarter of wakefield wavelength.

Working as a Linearizer

: Screen 6 and TCAV ON

August 26, 2013 FEL 2013

Heung-Sik Kang hskang@postech.ac.kr

RIVXUN: Revolver In-Vacuum X-ray UNdulator

H. S. Kang, THOAFI02, EPAC2006

- Permanent magnet structure is a revolving type with four arrays, which provides 4 different undulator periods of 10, 15, 20, and 24 mm.
- Made by Spring-8 (Kitamura et al. NIMA 467, 110 (2001)
- Operational at PLS since 2004

Array	Undulator Period [mm]	Number of period
С, с	10	101
B, b	15	67
A, a	20	50
D, d	24	42

Revolving Dechirper

- X-band RF linearizer can control a large variations of energy curvature depending on the beam parameters.
- Single corrugation Dechirper lacks controllability
- A revolving type with four corrugations (A,B, C, and D) can provide higher flexibility as X-band RF.

Dechirper against Microbunching Instability

- A more de-chirper is added to increase an energy chirp and, therefore, decrease R56 for bunch compression.
- It may reduce microbunching instability gain.

$$\sigma_z = \langle z^2 - \langle z \rangle^2 \rangle^{1/2} = \sqrt{(1 + hR_{56})^2 \sigma_{z_i}^2 + (aR_{56}\sigma_{\delta_i})^2} \approx |1 + hR_{56}|\sigma_{z_i}$$

 σ_z , σ_{zi} are given variables, so $h \ge R_{56} = \text{constant}$ $h \ge R_{56} = \text{constant} = h \ge R_{56}$ without dechirper with dechirper

Simulation study is under way

Summary

- Longitudinal wakefield-induced energy loss agrees quite well with theory
- Linear energy chirp also agrees reasonably well and therefore can be controlled ("dechirper")
- Transverse wakefields (dipole and quadrupole) are ~2-times weaker than expected (preliminary results)
- Even though the flat geometry introduces quadrupole wake, its effect is negligible in case of short bunch.
- Vertical offset control capability of the flat geometry is easy to minimize the emittance growth due to **dipole wake**.
- Possibility of working as a linearizer and mitigating the MBI will be investigated.

Thank you for your attention