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Abstract 
A broadband FEL amplifier is of great interests for 

short-pulse generation in FEL technology as well as for 
novel hadron beam cooling technique, such as CeC. We 
present our founding of a broadband amplification in 1D 
FEL dispersion relation based on electron beam with two 
energy peaks and a strong space charge forces. We 
connect its origin to the two-stream instability in electron 
plasma. Assuming a spatially uniform electron beam with 
double-peak κ-2 velocity distribution, we obtained a close 
form expression in the 3-D wave vector domain for the 
electron density variation induced by a point-like 
perturbation. The solution is then numerically inverse 
Fourier transformed to the configuration space. 

INTRODUCTION 
As observed from our previous studies [1], the 1D FEL 

dispersion relation has two growing modes for electron 
beam with double-peak energy distribution and 
sufficiently strong space charge. While one of the 
solutions has the typical narrow bandwidth of the FEL 
instability, the other solution has a much wider frequency 
range for amplification. After properly taking into account 
the frequency dependence of various parameters such as 
the Pierce parameter and 1D gain parameter, the 
mechanism for the wide-band amplification is identified 
as the two-stream instability, which indeed has a much 
wider amplification band for electron beam with small 
energy spread.  

While various authors have previously studied the two-
stream instability and two-stream FEL[2-5], a self-
consistent 3D model to describe the two-stream 
amplification process for a warm electron beam has not 
been fully developed, to our knowledge.  

In this work, we started from the coupled Poisson-
Vlasov equation system and derived an integral equation 
in the wave vector domain for the electron density 
variation induced by an arbitrary initial perturbation. 
Assuming the electrons have double-peak κ-2 velocity 
distribution, the integral equation reduces to a fourth 
order differential equation. For a point-like initial density 
perturbation, the solution has a close form in the wave 
vector domain, which is then inverse Fourier transformed 
to the configuration space using numerical method. In the 
second section, we solve the dispersion relation for an 
FEL with double-peak Lorentzian energy distribution and 
show that there is a wide-band growing mode when space 
charge is sufficiently strong. The growing rate is then 
compared with that of cold beam two-stream instability. 

The third section contains our derivation of the equation 
of motion and its general solution. We solve the initial 
value problem for a point-like initial perturbation in the 
fourth sectio and present numerical results of the electron 
density evolution induced by the perturbation. We 
summarize our studies in the last n.  

A WIDE-BAND GROWING SOLUTION IN 
FEL DISPERSION RELATION 

The 1D FEL dispersion relation reads[6]   
 s = 1+ isΛ̂ p

2( )D s( ) ,  (1) 

where s is the Laplace transformation-variable of the 
normalized longitudinal location zz Γ≡ˆ ,  

 Λ̂ p ≡
1
Γ

4π j0
γ z
2γ IA

⎡

⎣
⎢

⎤

⎦
⎥

1 2

,  (2) 

is the space-charge parameter, 

 Γ ≡ π j0θ s
2ω

cγ z
2γ IA

⎡

⎣
⎢

⎤

⎦
⎥

1 3

 , (3) 

is the 1D FEL gain parameter, ecmI eA
3≡  is the 

Alfven current, ω  is the radiation frequency, zv is the 
longitudinal velocity of electrons, zγ is the Lorentz 
parameter for zv , 

 Δ̂ ≡ − 1
Γ

kw +
ω
c
− ω
vz

⎡

⎣
⎢

⎤

⎦
⎥   (4) 

is the normalized detuning parameter,  wwk λπ2= is the 
undulator’s wave number,   ρ = γ z

2Γc ω   (5) 
is the Pierce parameter. The dispersion integral in eq. (1) 
is defined as                                                 

                     
D s( ) ≡ dP̂

dF̂ P̂( )
dP̂

1
s + i P̂ − Δ̂( )−∞

∞

∫ , (6) 

for any root of eq. (1) with ( ) 0Re >s to correspond to an 
exponential growing FEL instability. Taking the energy 
distribution as 

 F̂ P̂( ) = 1
2πσ

1

1+ P̂ /σ −ξ( )2
+ 1

1+ P̂ /σ + ξ( )2
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

,  (7) 

and inserting it into eq. (6) yields 

 D s( ) = i
s +σ − iΔ̂( )2 − ζσ( )2

s +σ − iΔ̂( )2 + ζσ( )2⎡
⎣⎢

⎤
⎦⎥
2

 , (8) 

which combines with eq. (1) leads to the following two-
stream FEL dispersion relation:   

 ____________________________________________  
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 s s +σ − iΔ̂( )2
+ ζσ( )2⎡

⎣⎢
⎤
⎦⎥

2

                = i s +σ − iΔ̂( )2
− ζσ( )2⎡

⎣⎢
⎤
⎦⎥

1+ isΛ̂ p
2( )

 . (9) 

As defined in eq. (3) and (5), Pierce parameter and 1D 
gain parameter are function of the radiation frequency, or 
detuning. Since FEL instability is typically narrow-band, 
these two parameters are often Taylor expanded around 
FEL resonant frequency and only lowest order values are 
kept. However, when the amplification band is wide, the 
expansion is invalid for frequencies far away from the 
resonant frequency. Figure 1 shows the growing solution 
of the dispersion relation, eq. , for parameters listed in 
Table 1. The growth rate of two-stream instability 
dispersion relation for cold electrons reads 

 Im ω( )⎡⎣ ⎤⎦
2
= −ω p0

2 1+ 2y2 − 1+ 8y2

2

⎛

⎝
⎜

⎞

⎠
⎟  , (10) 

with 
 y =

v1 − v2( )k
2ω p0

 . (11) 

As shown in Fig. 1, the growth rate solved from the 
FEL dispersion relation, eq. (1), exactly overlaps with the 
two-stream instability growth rate except for a small 
range around the FEL resonant frequency, which suggests 
that the wide-band growing solution of the FEL 
dispersion relation originates from the two stream 
instability. 

Table 1: Parameters used in Generating Figure 1 
Peak current 100 A 

Electron energy 20 MeV 
Wiggler period 1 cm 

Wiggler parameter, aw 0.2 
Energy speration 40 KeV 

ANALYTICAL MODEL FOR TWO-
STREAM INSTABILITIES 

The couple Vlasov-Poisson equation system describes 
the collision-less electron plasma, which in the co-moving 
beam frame reads 

 

∂
∂t
f1
x, v,t( ) + v ⋅ ∂

∂x
f1
x, v,t( )−


E x,t( )e
me

⋅ ∂
∂v

f0
v( ) = 0 , (12) 

and 
 

 
∇2ϕ x,t( ) = − e

ε0
n1
x,t( )  , (13) 

with  

 
 
n1
x,t( ) = f1

x, v,t( )d 3v
−∞

∞

∫ ,  (14) 

and 
 

 

E x,t( ) = −


∇ϕ x,t( )  . (15) 

Fourier transform eq. (12-(15) to the wave vector domain 
yields 
 

 
Figure 1: The growing root of the 1D FEL dispersion 
relation for two-stream cold beam as calculated from 
eq (9). The blue dash curve is the growing root of eq.  (9) 
calculated with the values of Pierce parameter and 1D 
gain parameter taken at the resonant frequency. The red 
solid curve is the growing root of eq. (9) calculated with 
the frequency dependent Pierce parameter and 1D gain 
parameter. The green triangles is the growing rate for cold 
beam two stream instabilities. 
 

 

 

f1

k , v,t( ) = f1


k , v,0( )e− ik ⋅vt

                   + i
ω p

2

k2 n1


k ,t1( )ei


k ⋅v t1−t( ) k ⋅ ∂

∂v
f0
v( )dt1

0

t

∫
,  (16) 

with 
 

 

f1

k , v,t( ) = f1

x, v,t( )e− i

k ⋅xd 3x

−∞

∞

∫  , (17) 

and 
 

 
n1

k ,t( ) = n1

x,t( )e− i

k ⋅xd 3x

−∞

∞

∫  . (18) 

Integrating eq. (16) over the velocities leads to the 
following integral equation: 

 

n1


k ,t( ) = f1


k , v,0( )e− ik ⋅vtd 3v

−∞

∞

∫

                       +ω p
2 n1


k ,t1( ) t1 − t( )g0


k t1 − t( )( )dt1

0

t

∫

,  (19) 

where 
 

 
g u( ) = 1

n0
f0
v( )e− iu⋅vd 3v

−∞

∞

∫ .  (20) 

For simplicity, we take un-perturbed velocity distribution 
of the electrons as 
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f0
v( ) = n0

2π 2βxβyβz

1+ vx
2

βx
2 +

vy
2

βy
2 +

vz + vsz( )2
βz
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−2⎧
⎨
⎪

⎩⎪

+ 1+ vx
2

βx
2 +

vy
2

βy
2 +

vz − vsz( )2
βz
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−2 ⎫
⎬
⎪

⎭⎪

 , (21) 

where 2vsz  is the velocity separation of the two streams 
in a frame in which the average velocity of all electrons is 
zero. Inserting eq. (21) into eq. (20) leads to 
 

 g
u( ) = exp −R u( )⎡⎣ ⎤⎦cos uzvsz( ) ,  (22) 

with 
 

 
R u( ) = uxβx( )2 + uyβy( )2 + uzβz( )2 .  (23) 

Inserting eq. (22) into eq. (19) produces 

 

H1


k ,t( ) = e−λ


k( )t f1


k , v,0( )e− ik ⋅vtd 3v

−∞

∞

∫

                    +ω p
2 H1


k ,t1( ) t1 − t( )cos kzvsz t − t1( )⎡⎣ ⎤⎦dt1

0

t

∫

 , (24) 

with 
 

 
H1


k ,t( ) ≡ n1


k ,t( )e−λ


k( )t ,  (25) 

and 
 

 
λ

k( ) ≡ − kxβx( )2 + kyβy( )2 + kzβz( )2 .  (26) 

Taking the fourth derivative of eq. (24) homogeneous 
ODE: 

 

d 4

dt 4
+ 2kz

2vsz
2 +ω p

2( ) d
2

dt 2
+ kz

2vsz
2 kz

2vsz
2 −ω p

2( )⎡

⎣
⎢

⎤

⎦
⎥ H1


k ,t( )

= d 4

dt 4
e−λ


k( )t f1


k , v,0( )e− ik ⋅vtd 3v

−∞

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥

. (27) 

The behaviour of the system is determined by the 
eigenvalues of eq. (27), which can be solved as 

 α1,2 = ±
ω p

2
1+ 8kz

2vsz
2

ω p
2 −1− 2kz

2vsz
2

ω p
2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

 , (28) 

and 

 α 3,4 = ±i
ω p

2
1+ 8kz

2vsz
2

ω p
2 +1+ 2kz

2vsz
2

ω p
2

⎛

⎝
⎜

⎞

⎠
⎟

1
2
 . (29) 

The first eigenvalue,  

 α1 =
ω p

2
1+ 8kz

2vsz
2

ω p
2 −1− 2kz

2vsz
2

ω p
2

⎛

⎝
⎜

⎞

⎠
⎟

1
2

 , (30) 

is identical to the growth rate of a cold beam two-stream 
instability, eq. (10). However, eq. (25) implies that there 
is an additional Landau damping term in addition to the 
exponential growing factor due to the two-stream 
instability. 

EXAMPLE FOR POINT LIKE INITIAL 
PERTURBATION 

    As an example of applying the formalism developed in 
the second section, we consider the following initial 
perturbation: 

 

 
f1
x, v,0( ) = δ x( )

π 2βxβyβz

1+ vx
2

βx
2 +

vy
2

βy
2 +

vz
2

βz
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−2

.  (31) 

The velocity distribution of the initial perturbation in eq. 
(31) is specifically chosen such that the inhomogeneous 
driving term in eq. (27) vanishes. The general solution for 
the resulting homogenous part of the differential equation 
reads 

 
 
H1


k ,t( ) = Bi


k( )eα i kz( )t

i=1

4

∑ , (32) 

with 
 
Bi

k( )  being coefficients to be determined by the 

initial density perturbation and its derivatives. Making use 
of eq. (25), we obtain the solution for the electron density 

 
 
n1

k ,t( ) = Bi


k( )e α i kz( )+λ k( )⎡⎣ ⎤⎦t

i=1

4

∑  . (33) 

There is only one possible growing term out of the four 
terms in the summation of eq. (33) with growth rate 
 

 
Γgrow =α1 kz( ) + λ k( )  . (34) 

For given longitudinal wave vector, kz , the optimal 
velocity separation of the two streams is 
 vsz =

3
8
ω p

kz
 , (35) 

with the maximal growth rate of 

 Γmax =
ω p

2 2
− kzβz

 . (36) 

Eq. (36) suggests that there is a short wavelength limit,  
 λz,min = 4π 2 βz

ω p

≈17.7 βz

ω p

,  (37) 

and the two-stream instability does not amplify electron 
density modulations with wavelength shorter than λz,min

.  
   The initial electron density and its derivatives are given 
by the initial phase space density perturbation, eq. (31), 
which, in the wave vector domain, reads 
 

 
n1

k ,0( ) = 1  , (38) 

and  

 

 

d n( )

dt n( ) n1

k ,t( )

t=0

= 0 ,  (39) 

with n = 1,2,3 . Applying the initial condition of eq. (38) 
and (39), the coefficients 

 
Bi

k( )  are determined as 

follows: 

 B1 =
α 3
2 − λ 2( ) α1 − λ( )
2α1 α 3

2 −α1
2( )

 , (40) 

 B2 =
α 3
2 − λ 2( ) α1 + λ( )
2α1 α 3

2 −α1
2( )

,  (41) 

MOPSO81 Proceedings of FEL2013, New York, NY, USA

ISBN 978-3-95450-126-7

146C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Novel Concepts



 B3 =
α1
2 − λ 2( ) α 3 − λ( )
2α 3 α1

2 −α 3
2( )

 , (42) 

and 

 B4 =
α1
2 − λ 2( ) α 3 + λ( )
2α 3 α1

2 −α 3
2( )

.  (43) 

The electron density in the configuration space is then 
given by inverse Fourier transformation of eq. (33). 
Assuming the velocity spread in the transverse plane are 
the same, i.e. 
 βx = βy = β⊥

 , (44) 
the 3D inverse Fourier transformation of eq. (33 can be 
expressed as 

 

n1
x,t( ) = 1

2π( )3
n1

k ,t( )eik ⋅xd 3k

−∞

∞

∫

= 1
2 2π( )2

dkze
ikzz J0 k⊥r⊥( ) n1 kz ,k⊥2 ,t( )dk⊥2

0

∞

∫
−∞

∞

∫

 (45) 

We used numerical approach to evaluate the evolution 
of the electron density as predicted by eq. (45) for 
vsz = 4βz . Figure 2 shows a numerical calculation of the 
growth rate as a function of the longitudinal wave vector, 
kz , for kx = ky = 0 . Figure 3 shows the time evolution of 
the electron density variation along the longitudinal 
location of the beam for a specific transverse location. 
The evolution is dominated by damping of the initial 
modulation amplitude both due to the motion of the 
streams and Landau damping from the velocity spread. 
After about two plasma oscillation, the two-stream 

instability takes over and a wave-packet with wavelength 
about 50 Debye length starts to develop. 
 

 
Figure 2: The growth rate of two-stream instability as 
calculated from eq. (34) with kx = ky = 0 . The abscissa is 
the longitudinal wave vector multiplied by the 
longitudinal Debye length, i.e. kzβz /ω p

. The ordinate is 

the growth rate in unit of angular plasma frequency, ω p . 

The amplitude of the wave-packets continues growing for 
the rest of the time with a growth rate about three fold per 
plasma period. Figure 4 shows the 2D contour plots of 
density modulation for identical parameters used in 
generating fig. 3, which shows that the transverse area of 
the wave-packet is about 100 transverse Debye radius and 
the longitudinal width is about 200 longitudinal Debye 
radius after 10 plasma oscillations. 

 

 
Figure 3: Evolution of electron density in the configuration space as calculated from eq. (45). The abscissas of the plots 
are the longitudinal location along the electron beam in units of longitudinal Debye length, az = βz /ω p and the ordinates 

are the electron density variation in units of 1/ a⊥
2az( ) , with a⊥ = β⊥ /ω p being the transverse Debye radius. Each of the 

six snapshot is taken at a given time and transverse location. The transverse locations are specified in the plots by 
r = x2 + y2 , in units of the transverse Debye radius.  The time that these snapshots are taken is specified by the plasma 
phase advances, ω pt . The longitudinal velocity separation of the two streams is vsz = 4βz  for all plots. 
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Figure 4: Contour plots of Fig. 3 showing the 2D images of the density modulation. The horizontal axis is the 
longitudinal location along the direction of the stream velocity and the vertical axis is the transverse location 
perpendicular to the direction of the stream velocity. The spans of the plotted spatial ranges and the time when the 
snapshots are taken are specified in the plots. 

SUMMARY 
    In this work, we developed an analytical model to 
study two stream instabilities for a warm electron beam 
with double peak Lorentzian velocity distribution. The 
Vlasov-Poisson system is reduced to a fourth order 
inhomogeneous ordinary differential equation (ODE) 
in the wave vector domain, which, in general, can be 
solved for arbitrary initial phase space initial 
perturbation. As a simple example, the differential 
equation is solved for a specifically chosen initial 
phase space density perturbation, which allows the 
inhomogeneous driving term to vanish. The wave 
vector domain solution is then numerically inverse 
Fourier transformed into the configuration space and 
the resulting electron density evolution in a two-stream 
electron plasma is presented. 
    According to our model, the two stream instability 
will not amplify electron density modulation with 
wavelength below 17.7 longitudinal Debye radius.  
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