
NUMERICAL ACCURACY WHEN SOLVING THE FEL EQUATIONS∗

R.R. Lindberg † , ANL Advanced Photon Source, Argonne, IL 60439, USA

Abstract
The usual method of numerically solving the FEL equa-

tions involves dividing both the e-beam and radiation field
into ”slices” that are loaded one at a time into memory.
This scheme is only first order accurate in the discretiza-
tion of the ponderomotive phase because having only one
slice in memory effectively results in a first order interpo-
lation of the field-particle coupling. While experience has
shown that FEL simulations work quite well, the first order
accuracy opens the door to two possible ways of speeding
up simulation time. First, one can consider higher order
algorithms; unfortunately, these methods appear to require
all the particle and field data in memory at the same time,
and therefore will typically only be important for either
small (probably 1D) problems or for parallel simulations
run on many processors. Second, one may consistently
solve the equations to some low order using faster, simpler
algorithms (replacing, for example, the usual RK4). The
latter is particularly attractive, although in practice it may
be desirable to retain higher order methods when integrat-
ing along z. We investigate some of the possibilities.

INTRODUCTION
Numerical simulation of free-electron lasers (FELs) is

an integral part of understanding existing FEL devices and
planning for future machines. Presently there are several
codes (Ginger [1], genesis 1.3 [2], FAST [3], MEDUSA
[4], etc.) that have shown remarkable agreement with ex-
perimental measurements. While the current FEL algo-
rithms are based on several physical approximations de-
signed to increase their speed and efficiency, certain prob-
lems can still require many hours (or even weeks/months)
of CPU time. Here we discuss some of the factors that play
a role in FEL simulation time, and show an algorithm that
can reduce the computational time for certain FEL prob-
lems by a factor of two without sacrificing numerical sta-
bility or accuracy.
For simplicity, the present paper predominantly restricts

itself to treating the FEL equations in 1D, but our general
discussion is relevant to the full 3D system. We begin by re-
viewing some of the numerical algorithms/tricks used to re-
duce computational time, and show that for time dependent
simulations the resulting FEL codes are limited to being
first order accurate in the discretization of the ponderomo-
tive phase. Hence, traditional FEL codes at best converge
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∼ (Δθ). Before more fully discussing time dependence,
however, we introduce some of the issues regarding nu-
merical accuracy using the single frequency/time indepen-
dent equations. We present an explicit algorithm that inte-
grates the FEL interaction while exactly conserving the to-
tal (kinetic + field) energy, and compare its performance to
more the traditional second and fourth order Runge-Kutta
solvers, abbreviated by RK2 and RK4, respectively.
Then, we turn to the fully time dependent equations.

Here, we show how to develop a fully second order (in
bothΔz andΔθ) FEL algorithm. However, this method re-
quires that all the particles and field data be simultaneously
accessible in memory, and hence is probably only practi-
cal for small problems or those run on multiple processors.
Furthermore, the accuracy requirements for a typical FEL
simulation do not require a fully second order method, and
we show that our conservative algorithm is probably suf-
ficient for almost all problems, and is twice as fast as the
typical RK4 scheme. Finally, we indicate how our conser-
vative 1D algorithm can be extended to 3D.

NUMERICALLY SOLVING THE 1D FEL
EQUATIONS

The longitudinal FEL particle phase space is comprised
of the ponderomotive phase θj ≡ (ku + k1)z − ck1tj
and the scaled energy difference (Lorentz factor) ηj ≡
(γj − γr)/γr. Here, the coordinate z is the distance along
the undulator and tj is the particle time, while ku ≡ 2π/λu

and k1 ≡ 2π/λ1 are the undulator and resonant radia-
tion wavevector, respectively, which are related to the ref-
erence energy γr through the FEL resonance condition
λ1 = λu(1 +K2/2)/2γ2

r (the undulator deflection param-
eter K ≡ eB0/mcku, with B0 being the peak magnetic
field and e, m, c the electron charge magnitude, mass, and
the speed of light).
We use the standard Bonifacio-Pelligrini-Narducci scal-

ing for high gain FELs [5], defining the scaled energy, dis-
tance, and electric field via η̂ ≡ η/ρ, ẑ ≡ 2ρkuz, and
a(θ, ẑ) ≡ [eK[JJ]/(ρ2mc2γ2

r )]E(θ; ẑ); the dimensionless
FEL parameter ρ is given by

ρ ≡
[
1

8π

I

IA

(
K2[JJ]

1 +K2/2

)2
γrλ

2
1

2πσ2
x

]1/3

, (1)

where I is the peak current, IA ≡ 4πε0mc3/e ≈ 17 kA
is the Alfvén current, ε0 is the permittivity of free space,
σx is the rms beam size, and the Bessel function factor
[JJ] ≡ J0[K

2/(4+2K2)]−J1[K
2/(4+2K2)]. We assume
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that the FEL equations are averaged in the phase θ over the
ponderomotive length 2πMave, in which case the 1D FEL
equations are

dθj
dẑ

=
1

2ρ

[
1− 1

(1 + ρη̂j)2

]
(2)

dη̂j
dẑ

=
1

2πMave

∫
dθ

[
a(θ, ẑ)eiθj + c.c.

]
× 1

1 + ρη̂j
Π
(

θ−θj
2πMave

) (3)

∂a

∂ẑ
+

1

2ρ

∂a

∂θ
= − 1

Nλ

Ne∑
j=1

e−iθj(z)

1 + ρη̂j
Π
(

θ−θj
2πMave

)
. (4)

Here, Nλ is the number of (macro)particles in the 2πMave
wavelegnths associated with the averaging, while Π(x) is
the rectangle function that is defined to be unity if |x| ≤
1/2 and zero otherwise. The small-efficiency (Δγj/γ0 =
ρη̂j � 1) limit obtains by setting ρ → 0 above.
Traditional FEL algorithms are based on the so-called

“slice” formulation, wherein the field and electron beam
are divided into a number of discrete FEL slices associated
with the averaged ponderomotive length. Since the radia-
tion from any electron only travels forward a total distance
Nuλ1, one can begin by loading into memory a single pon-
deromotive slice of particles from the tail of the electron
beam, and record the generated field as a function of z. Af-
ter discarding the particles, the field history is then used as
an input when integrating the equations of motion for the
next slice of particles closer to the beam head, and again the
radiation produced is stored. This process repeats sequen-
tially from tail to head until the entire output field is cre-
ated. This standard FEL algorithm has very modest mem-
ory requirements, since only a small fraction of the total
number of particles need be in memory at a time.
On the other hand, the algorithm’s rate of convergence is

no better than linear with the discretization size Δθ. This
is because evaluating the force in (3) requires knowing the
field over the entire averaging length 2πMave. The standard
FEL algorithm effectively assumes that the field is constant
within each (averaged) FEL slice, so that the accuracy at
best scales linearly with Δθ. There is in principle no way
to construct a fully second order scheme without abandon-
ing the usual sequentially loaded slice formulation just de-
scribed, since all the neighboring (in θ) field values are not
known at the same location along ẑ.
Nevertheless, the slice formulation has been quite suc-

cessful for FEL simulation largely because of the relatively
short integration distances (up to saturation the errors have
only accumulated over 10-15 scaled units of ẑ), the rela-
tive unimportance of the precise field profile, and because
the level of energy conservation can be much better than
that implied above. Specifically, the first order conver-
gence need only apply to the precise field profile and parti-
cle trajectories. For example, the popular discrete slippage
scheme, in which the field is advected forward one grid
spacing Δθ after a determined number of steps in ẑ, ex-
actly conserves energy and is properly causal for all values

ofΔθ, so that using this method of field advection/slippage
means that the degree of energy conservation is entirely de-
termined by the numerical integration scheme applied to
the FEL interation.
Nearly all of the convergence complications arise from

the way in which the field and e-beam are longitudinally
discretized, particularly in the evaluation of the FEL in-
teraction for a θ-dependent electric field a. Hence, these
issues only appear when there are multiple particle buck-
ets/radiation frequencies: a periodic, single frequency sys-
tem simplifies the field-particle interaction such that the
FEL is governed by a coupled set of ODEs. For this rea-
son, we will first discuss numerically integrating the FEL
equations when field amplitude doesn’t depend on θ (i.e.,
single frequency/bucket simulations), and return to the time
dependent case later.

Numerical Accuracy
Comparing different FEL numerical schemes is compli-

cated by the fact that SASE is initialized by the particle
bunching due to the initially random longitudinal positions
(shot noise), which makes it difficult to begin with the same
initial conditions while varying the integration step size
and/or the number of macroparticles. To load the same ini-
tial conditions, our particle loading scheme was designed
to match the numerical bunching to that of a particular
beam containing the actual number of electrons. We being
with a random distribution of the actual number of elec-
trons within a fixed number of wavelengths that is sorted
by phase from smallest to largest. Starting with the elec-
tron of smallest θ, we then compute the bunching due to
the number of electrons each macroparticle is designed to
represent, and assign the first macroparticle’s phase coor-
dinate such that its phase gives the appropriate bunching.
Hence, if the actual beam has Ne electrons that we repre-
sent with Nmacro particles, we choose

θj such that e−iθj =
Nmacro

Ne

Ne/Nmacro∑
�=1

e−iθ� . (5)

We repeat this process for the next collection of particles
until all the macroparticle phases have been assigned.
We can then verify that a given integrator converges as

(Δz)q (i.e., that it is a qth order method) by numerically in-
tegrating the equations using three different step sizes Δẑ,
Δẑ/2, and Δẑ/4. From simple error analysis, the order of
the method can be numerically estimated using the real and
imaginary parts:

	[a(Δẑ)− a(Δẑ/2)
]

	[a(Δẑ/2)− a(Δẑ/4)
] ≈ 2q (6)


[a(Δẑ)− a(Δẑ/2)
]


[a(Δẑ/2)− a(Δẑ/4)
] ≈ 2q. (7)

The error equations (6)-(7) can be used to show that a
particular implementation faithfully solves the FEL equa-
tions if q > 0, with larger q indicating smaller errors per

Proceedings of FEL2013, New York, NY, USA MOPSO49

FEL Theory

ISBN 978-3-95450-126-7

83 C
op

yr
ig

ht
c ○

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



step. On the other hand, the convergence is complicated
by the fact that FELs are typically simulated using a num-
ber of macroparticles that is much smaller than the actual
number of electrons. If the macroparticles are loaded prop-
erly (like the loading of Eq. (5) or those of Refs [6] and
[7]) the results will be almost independent of the number
of macroparticles. Finally, the averaging employed to ar-
rive at (2)-(4) introduces its own possible inconsistencies
and abiguities.
Nevertheless, for most FEL simulation one is interested

in answering a more pedestrian question than order of con-
vergence: how big can we makeΔẑ andΔθ and still faith-
fully reproduce the dynamics? Numerical errors less than
a few percent are largely irrelevant, since uncertainties in
initial conditions are typically at least that big, while varia-
tions in the output power due to the length of the pondero-
motive average, the number of simulation macroparticles,
and the random load of the shot noise are all on the per-
cent level. Hence, a numerical solution is probably “good
enough” if it has qualitatively the same behavior and is
quantitatively accurate to less than a percent.

An Energy Conserving Numerical Scheme
The accuracy and convergence of energy conservation

depends on the properties of the numerical integrator ap-
plied to the FEL interaction. For example, over macro-
scopic distances energy conservation decreases with (Δz)2

for a generic second order method, while the error for the
popular fourth order Runge-Kutta RK4 is O[(Δz)4]. On
the other hand, the Störmer-Verlet-type integrator

θ
h+1/2
j = θhj +

Δẑ

2

1

2ρ

[
1− 1

(1 + ρη̂hj )
2

]
(8)

ah+1 = ah −Δẑ
1

Nλ

Nλ∑
j=1

1

1 + ρη̂hj
e−iθ

h+1/2
j (9)

ηh+1
j = ηhj +

Δẑ

2

[
ah + ah+1

1 + ρη̂hj
eiθ

h+1/2
j + c.c.

]
(10)

θh+1
j = θ

h+1/2
j +

Δẑ

2

1

2ρ

[
1− 1

(1 + ρη̂h+1
j )2

]
(11)

is explicit and exactly conserves total energy (to machine
precision). In particular, it is straightforward to show that
the discrete evolution (8)-(11) implies that

∣∣ah+1
∣∣2 + 1

Nλ

∑
j

η̂h+1
j =

∣∣ah∣∣2 + 1

Nλ

∑
j

η̂hj . (12)

Note that in the low efficiency (ρ = 0) limit, the algorithm
above is second order and symplectic, being the Störmer
Verlet integration of an associated Hamiltonian (see [8] and
references therein). The full update (8)-(11) has a local er-
ror that scales as the maximum of (Δẑ)3 and ρη̂j(Δẑ)2.
For typical x-ray FEL simulations that do not employ post-
saturation taper, ρ � Δẑ and this algorithm is effectively
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EC: Δẑ = 0.025
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Figure 1: Comparison of the estimated convergence for the
conservative scheme (red solid lines) and a standard RK4
method (blue dotted lines). HereΔẑ is the largest step size
used in the formula (6)-(7) (i.e., the points atΔẑ = 0.1 are
derived using simulations withΔẑ = 0.1, 0.05, and 0.025),
and we have used both the field a and the bunching b to de-
termine q. The conservative scheme appears to be a second
order scheme since ρ = 5 × 10−4 � Δẑ. The predicted
output power for two step sizes is shown in (b), where we
see that for these parametersΔẑ = 0.2 is sufficient.

second order with a global error that decreases quadrati-
cally withΔẑ.
Figure 1(a) contains results demonstrating the effectively

second order nature of our energy conserving (EC) algo-
rithm. Here, we compare numerically extracted algorith-
mic order q for the EC update with the standard RK4 in-
tegration scheme for various step sizes as determined by
Eqs. (6) and (7) (and their analogs for the bunching b). The
quoted q is the average over many final points ẑ. Since
these steps sizes are larger than ρ = 5 × 10−4, EC con-
verges like a second order code. Furthermore, the field
profiles are nearly indistiguishable as shown in Fig. 1(b),
while the EC code has approximately 2.5 times fewer op-
erations per time step and therefore takes less than half the
time to run.
Since the global error in the EC update scales as the
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larger of (Δẑ)2 and ρη̂j(Δẑ), we might worry that it would
perform poorly when η̂j approaches 1/ρ (i.e. Δγj → γr).
For x-ray FELs, extracting this large amount of energy is
done by varying (tapering) the undulator field strength af-
ter the exponential instability has been saturated. The un-
dulator taper serves to effectively lower the ponderomotive
potential formed by the optical field, thereby extracting ad-
ditional energy from the trapped electrons. Through this
process it is in principle possible to convert most of the e-
beam kinetic energy into field energy, so that at the end ρη̂j
can approach unity and the EC code becomes a first order
algorithm.
We have found that the EC integrator performs very

well even for extreme undulator tapers that result in large
changes in energy, a nice feature that we believe can be
attributed to the fact that it exactly conserves energy re-
gardless of the step size. We show this in Fig. 2, where
we plot the power as a function of ẑ for an extreme post-
saturation undulator taper. In Fig. 2 we compare the results
from our energy conserving (EC) update to the more stan-
dard RK2 and RK4 schemes for two different step sizes.
We find that EC code predicts a final power that is within
1% of the well-converged result for Δẑ ≤ 0.1; the RK4
update predicts a power that is more than 5% too high
when Δẑ = 0.1, while the agreement is comparable for
Δẑ = 0.2. On the other hand, the RK2 algorithm does a
poor job with the steps sizes show in the Figure, and instead
requires Δẑ = 0.0125 to yield a similar level of accuracy.
Hence, to verify the convergence of the solutions in Fig. 2
would take almost five times longer with RK4, and about
four times longer with RK2.
These findings do not contradict the order of conver-

gence of the various algorithms, but rather point out the
fact that a higher order code does not necessarily mean
a more accurate one for all step sizes. In particular, we
have found that for parameters like those in Fig. 2, the
EC code better predicts the “true” solution than does RK4
when Δẑ � 0.05, while performing better than RK2 for
all tested Δẑ ≥ 0.00625. Hence, we see that for step sizes
typically employed for FEL simulation the EC algorithm’s
poor asymptotic scaling is comparatively benign, and it is
fact as accurate as RK4 while being significantly faster to
run.

Time Dependent Simulations
Any algorithm integrating the FEL interaction can be

easily incorporated into a time dependant FEL code us-
ing the slice formulation discussed previously. For exam-
ple, one can employ operator splitting to divide the EC up-
date from the field advection (slippage), with the advection
being solved, for example, by passing the field ahead an
amount Δθ = Δẑ/2ρ every step in ẑ. As we explained
previously, however, the resulting integration scheme will
only be first order accurate in the phase, even if the operator
split implemented is apparently second order.
We can construct a fully second order accurate method

in both ẑ and θ by subdividing the ponderomotive length

0
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0.5
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P
/
γ
r
m
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EC: 0.1
RK2: 0.1
RK4: 0.1
EC: 0.05
RK2: 0.05
RK4: 0.05

Figure 2: Comparison of the EC, RK2, and RK4 algorithms
for an extreme undulator taper resulting in efficiencies ap-
proaching 50%. The EC algorithm predicts a final output
power within 1% of the converged value when Δẑ ≤ 0.1.
On the other hand, RK4 is noticably off when Δẑ = 0.1,
while the RK2 power agreement is very poor. For step sizes
Δẑ ≤ 0.05 the RK4 is quite accurate, while RK2 requires
even smaller step sizes, Δẑ ≤ 0.025.

2πMave and linearly interpolating the field values in the
energy equation (3). For example, if we use 2D such di-
visions as we show in Fig. 3 and define xj ≡ (θ

−1 −
θj)D/πMave so that 0 ≤ xj < 1, then the equation of
motion for the particle energy becomes

dη̂j
dẑ

=
eiθj

2D

{
(1−xj)

2

2 a
−D−1 +

(
1− xj

2

)2
a
−D

+
D−1∑
�=1

(
a� + a

−�

)

+
2−(1−xj)

2

2 aD +
x2
j

2 aD+1

}
+ c.c.

(13)

The source current/bunching for the field equation can be
determined from (13) by invoking energy conservation. For
simplicity here we only include the equation for the field
a1 assuming that there are ND = Nλ/2D particles per
discretization Δθ. We again split the particle phase into
the part identifying the location of the field variables and
the remainder xj , so that the phase of the electron located
between a� and a�+1 is written as θj = θ�,j = θ�+xj with
0 ≤ xj < 1; note for completeness we probably should
include additional subscripts on xj identifying the θ�, but
hope that its meaning is clear enough. Then, the source
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× × · · · × · · · × × · · · × · · · × ×
��

Δθ = πMave/D

a
−D−1 a

−D a
−� a

−1

�

��

xj = (θj − θ
−1)/Δθ

a1 a� aD aD+1

2πMave = averaging length
��

Figure 3: Diagram of the discretizations used in construct-
ing a second order accurate algorithm to integrate the FEL
interaction.

term for a1 is

− 1

Nλ

ND∑
j=1

{
1
2x

2
je
−iθ

−D−1,j +
2−(1−xj)

2

2 e−iθ
−D,j

+

D−1∑
�=−D+1

e−iθ�,j +
(
1− x2

j

2

)
e−iθD,j

+
(1−xj)

2

2 e−iθD+1,j

}
.

(14)

To verify that (13), (14), and (2) is indeed second order
in both z and θ, we extend the error analysis of (6)-(7) to
include the dependence onΔθ using∥∥a(Δẑ,Δθ)− a(Δẑ/2,Δθ/2)

∥∥∥∥a(Δẑ/2,Δθ/2)− a(Δẑ/4,Δθ/4)
∥∥ ≈ 2q. (15)

In (15) q now corresponds to the smallest order of the
method in either ẑ or θ, while ‖·‖ is a suitable norm that
we take to separately be the vector length of the real and
imaginary parts of a:

‖a‖ ≡
[∑

n

(	 an)
2

]1/2
or

[∑
n

(
 an)
2

]1/2
. (16)

Note that for periodic signals of fixed temporal duration
q is particularly simple to compute nermically using the
FFT, since in this case the frequency spacing is the same
independent ofΔθ.
We show results for the numerically determined algo-

rithmic order q in Table 1. For these results, we simu-
lated SASE in a periodic box of 214 wavelengths for a total
scaled undulator length ẑ = 15, and we chose an averag-
ing length of Mave = 16 periods. Table 1 clearly shows
that the slice formulation limits the order of convergence
to first order when either the EC or RK4 scheme is used to
integrate the FEL interaction. On the other hand, we find
that the second order method described above converges
with a measured q ≥ 1.85; our implementation here is a
straightforward extension of our energy conserving (EC)
algorithm.
We have shown how to develop an numerical scheme

that is second order in both time (θ) and space ẑ. Exten-
sions to higher orders are possible, but it appears unlikely
that such algorithms would be useful. In particular, the sec-
ond order algorithm described here is significantly more

Table 1: Measured order of convergence q of theoreti-
cally 2nd order algorithm and the EC and RK4 integration
schemes using the slice formulation. The listedΔẑ andΔθ
are the largest used in Eq. (15).

Δẑ = 2ρΔθ = 0.1 Δẑ = 2ρΔθ = 0.05
Algorithm 	(a) 
(a) 	(a) 
(a)
2nd order 1.95 1.86 1.93 1.90

EC 1.07 0.59 1.03 1.28

RK4 1.08 0.60 1.02 1.30

complicated to code and requires all the field and particle
data to be stored in memory at the same time. Further-
more, we have shown that the formally first order energy
conserving scheme EC can actually perform better than the
fourth order RK4 for certain problems using typical step
sizes. Hence, it seems unlikely that a fully second order (or
higher) scheme is necessary at this time for FEL problems.

Extensions to 3D Simulations
We have found that our energy conserving 1D FEL in-

tegration algorithm (8)-(11) has very good numerical prop-
erties, which we have attributed to the fact that it exactly
conserves kinetic plus field energy for any step size. In this
section we briefly show how this conservative method may
be extended to the full 3D interaction.
It turns out that our EC algorithm can be easily extended

to 3D if we use the angular representation of the electro-
magnetic field. In this case, the 3D generalizations of the
particle energy equation (3) and field equation (4) are

dη̂j
dẑ

=
σ̂2
x

2πMave

∫
dθdφ

[
aei(θj+φ·x̂j) + c.c.

]
× 1

1 + ρη̂j
Π
(

θ−θj
2πMave

) (17)

∂a

∂ẑ
+

1

2ρ

∂a

∂θ
+

iφ2

2
a

= − 1

Nλ

Ne∑
j=1

e−i(θj+φ·x̂j)

1 + ρη̂j
Π
(

θ−θj
2πMave

)
,

(18)

where xj and σ̂x are the electron transverse coordinate
and the rms e-beam size scaled by

√
2ρkuk1, while φ is

the transverse angle scaled by
√
k1/2ρku. At any angle

φ the field equation (18) is similar to its 1D counterpart
with two exceptions: the additional particle phase in the
FEL interaction and the oscillator-type term ∼ i(φ2/2)a
that gives diffraction. The latter can be isolated out us-
ing operator splitting (e.g., the Strang method [9]) and then
solved with the energy conserving update a(φ, ẑ +Δẑ) =

a(φ, ẑ)e−iφ2Δẑ/2. The FEL interaction can be updated at
each angle using a trivial extension to (3) that includes the
additional phase; if accompanied by a similar extension to
the particle energy equation (17) in which the integral over
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φ is discretized as a sum, the full update exactly conserves

∑
n,m

ΔφxΔφy |an,m|2 + 1

Nλ

∑
η̂j (19)

at each step, where the field subscripts n and m label the
angular coordinate in φx and φy , separately, which are dis-
cretized at a spacing ofΔφx andΔφy .

CONCLUSIONS
We have shown that the standard FEL slice formulation

used to integrate the FEL equations is at best a first order
algorithm in the discretization of the phase Δθ. To ad-
dress this issue we then introduced a scheme that is fully
second order accurate; however, its increased complexity
and requirement to have all particles in memory may limit
its utility, particularly since the accuracy requirements for
FEL simulation are relatively modest. In fact, we have pre-
sented a formally first order algorithm whose accuracy can
be superior to the fourth order RK4 for large step sizesΔẑ.
We have argued that this is because it exactly conserves
energy, and believe that this energy conserving algorithm
may be of general interest since it is typically twice as fast
as the RK4 update. Finally, we showed how to extend our
algorithm to 3D.
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