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Abstract
The coherent electron cooling (CeC) [1] device is one

of the new facilities under construction at Brookhaven Na-
tional Laboratory (BNL). The CeC is a realization of the
stochastic cooling with an electron beam serving as a pick-
up and a kicker. Hadrons generate electron density pertur-
bations in the modulator section, then these perturbations
are amplified in an FEL, and then, they accelerate (or de-
celerate) hadrons in the kicker by their electric field with
respect to the hadrons’ velocities. Here we present the the-
oretical description of the modulator sector [2, 3], where
the electron density perturbations are formed, and our new
results on the time evolution of these perturbations in the
FEL section, where they are amplified.

INTRODUCTION
The scheme of the CeC device is depicted in Fig. 1. It

Figure 1: The scheme of the coherent electron cooler.

consists of three sections: the modulator section, where the
electron density perturbations are created by hadrons, the
FEL section, where these perturbations are amplified, and
the kicker section, where the amplified perturbations accel-
erate (decelerate) hadrons moving slower (faster) than the
one with the desired energy, before the kicker, hadrons pass
through the dispersion section, where they are delayed in
accordance with their energy deviations. In the present ar-
ticle, we describe theoretical models for all these sections.

THE MODULATOR SECTION
In the modulator section, each hadron in a hadron beam

creates density perturbations in a co-propagating electron
beam. The dynamical shielding of a charged particle in an
infinite beam was considered in [4] and for the certain dis-
tribution the density perturbation was expressed as a one-
dimensional integral, the more general method for a finite
beam taking into account focusing fields was proposed in
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[2]. In the present article, we just quote some results from
[3], where this problem was solved via the numerical eval-
uation of the inverse integral transforms for a variety of
equilibrium distributions for a finite electron beam.

General Solution
Here we describe the dynamical shielding of a charged

particle in an infinite isotropic electron beam via the
Fourier and Laplace transforms. We introduce the follow-
ing dimensionless variables:

~x =
~x

rD
, ~v =

~v

vrms
, t =

t

tp
≡ tωp, rD =

vrms

ωp
,

where

vrms =

√
1

ρ

∫
v2f0(~v)d~v, ωp =

√
e2ρ

m0γε0
, (1)

and the dimensionless equilibrium density f0(~v):

f0(~v) = ρfdf0(~v),

∫
f0(~v)d~v = ρ. (2)

For a unitary point charge moving along a straight line
~y (t) = ~x0 +~v0t, we have for the induced electron density
perturbation for any number of spacial dimensions d:

n1 (~x, t) = L−1F−1

 e−i
~k·~x0(

f−1
d v−drms

LF~kt(tf0(~v))
+ 1
)(

s + i~k ·~v0
)
 ,

(3)

where LF~kt (tf0 (~v)) depends on the equilibrium distribu-
tion:

LF~kt (tf0 (~v)) =

∞∫
0

e−tst

∫
f0 (~v) e−i

~k·~vtd~vdt, (4)

f−1d v−drms is a dimensionless factor, and L−1, F−1 are the
inverse Laplace and Fourier transforms, respectively.

Solutions for Some Distributions
We consider several distributions for the 1D, 2D and 3D

cases. vrms, fd, and f−1d v−drms can be computed via (1)
and (2) for all distributions excepting the Cauchy. The
solution (3) is valid for all these cases, we only need to
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compute LF~kt (tf0 (~v)) and f−1d v−drms. For the Kapchinskij-
Vladimirskij (KV) distribution we have:

1D: f0(~v) = δ(v2 − 1), LF~kt (tf0 (~v)) =
s2 − k2

(s2 + k2)
2 ,

2D: f0(~v) =
1

π
δ(v2 − 1), LF~kt (tf0 (~v)) =

s

(s2 + k2)
3
2

,

3D: f0(~v) =
1

2π
δ(v2 − 1), LF~kt (tf0 (~v)) =

1

2
Î(s,~k, 1),

where

Î(s,~k, v) =
ik3v (S− − S+) + s (S− + S+)

(s2 + k2v2)S−S+
,

S± =

√(
s± ik

2
3v

k

)2

,

for the water-bag (WB):

f0(~v) =
1

2
Θ(1− v2), LF~kt (tf0 (~v)) =

1

k2 + s2
,

f0(~v) =
1

π
Θ
(
1− v2

)
, LF~kt (tf0 (~v)) =

2

k2

√
k2 + s2 − s√
k2 + s2

,

f0(~v) =
3

4π
Θ(1− v2), LF~kt (tf0 (~v)) =

3

2

1∫
0

v2Î(s,~k, v)dv,

for 1D, 2D, and 3D respectively. For the Normal (Maxwell)
distribution, f0(~v) = π−

d
2 e−v

2

, we have:

LF~kt (tf0 (~v)) =
2

k2

[
1−
√
πe

s2

k2
s

|k|
Erfc

s

|k|

]
,

where Erfc(z) is the complementary error function,

vrms =

√
dHc

2β
, fd =

(
β

Hc

) d
2

, f−1d v−drms = (2/d)
d
2 .

And for the Cauchy distribution we have:

f0(~v) =
Γ( 1+d

2 )

Γ( 1
2 )π

d
2

1

(1 + v2)
1+d
2

, LF~kt (tf0 (~v)) =
1

(s + k)
2 .,

vrms =

√
Hc

β
, fd =

(
β

Hc

) d
2

, f−1d v−drms = 1.

Then the inverse integral transforms in (3) have to be com-
puted. They can be rewritten as the discrete Fourier trans-
forms and then evaluated numerically using the fast Fourier
transform (FFT) algorithm. For the 1D Cauchy distribu-
tion, it is possible to compute these integral transforms an-
alytically:

n1 (~x, t) =
1

4π

1

v0 − i
(
e−A+ (Ei(A+)− Ei(B+)) +

+eA+ (E1(A+)− E1(B+))
)

+

+
1

4π

1

v0 + i

(
e−A− (Ei(A−)− Ei(B−)) +

+eA− (E1(A−)− E1(B−))
)
, (5)

A± =
tv0 − x + x0

1± iv0
, B± =

x0 − x± it
1± iv0

,

Figure 2: The exact and the FFT values for n(~x, t) for the
1D Cauchy case.

and E1(z) and Ei(z) are the exponential integral functions,
which can be computed via the series expansions. In
Fig. 2, it is shown that the numerical computations of
the density perturbation using the FFT for the 1D Cauchy
distribution are in a perfect agreement with the exact
values computed via (5).

In Fig. 3, 4, we show the numerical results for n1 (~x, t)
obtained via the program we developed. q is a parameter
defining the number of the grid points used in the FFT
algorithm via N = 2q . In Fig. 3, we show our numerical
results for all 1D distributions we considered. The dynam-
ics of the perturbations for the 2D KV, WB and Cauchy
distributions is depicted on the Fig. 4, where we also show
results for the 3D Cauchy distribution.

The method and the program we developed provide an
opportunity to compute the dynamical shielding for many
useful distributions for 1D, 2D and 3D infinite plasmas,
they can be easily extended to any other equilibrium dis-
tributions including the empirical one. These results can
be used for modeling the modulator section of CeC, they
also can serve as a testing ground for other computational
methods, e.g., particle-in-cell (PIC) simulations [5] and the
more general numerical approach for a finite beam [3].

THE FEL SECTION
In the FEL section, the perturbations generated in the

modulator are amplified via the high gain FEL. We apply
the 1D FEL theory [6, 7] to derive an expression for the am-
plified perturbation density and the density corresponding
to the self-amplified spontaneous emission (SASE), which
can be used to estimate the saturation length, providing the
limitations on the density perturbations amplification, and,
as a result, on a performance of the whole CeC machine.
We start with the coordinate transformation from the mod-
ulator to the FEL section, then describe the FEL system of
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Figure 3: The density n(~x, t) for the KV, WB, Normal, and Cauchy distributions in 1D.

Figure 4: The density n(~x, t) for the KV and WB in 2D and the Cauchy in 2D and 3D.
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equations, and then solve it for the initial conditions cor-
responding to the perturbation from the modulator and the
SASE.

From the Modulator to the FEL Amplifier
The modulator is described in a system of reference

moving with the electron beam, however, the FEL theory
is written in a laboratory frame, thus, we need to perform
the Lorentz transformation, then we shift coordinates such
that the ion have coordinates (z, t) = (0, 0) by the end of
the modulator section, then we introduce the standard in-
dependent variables in the FEL theory, (θ, z), a phase and
a coordinate along the beam, via:{

θ(z, t) = (k1 + ku)z + ck1t,

z(z, t) = z,

the phase θ is the position relative to the bunch center. The
”reference electron” is the one that has θ = 0, it has the
same position as the ion. It is well-known that the phase-
space density is Lorentz-invariant, thus, if we assume that
the velocity distribution of the density perturbation is δ(v)
and using the relation η = v

c (η = γ−γr
γr

– the rela-
tive energy deviation from the resonance [7]), valid for
the ultra-relativistic beams, we obtain the following rela-
tion between the density perturbation n

(lab)
1 (θ, z) in the lab

frame to be used as the initial perturbation in the FEL sec-
tion and the density perturbation n1(~z

′
, t
′
) in the beam’s

frame:

n
(lab)
1 (θ, z) = n1

(
z
′
(θ, z), t

′
(θ, z)

)
,

and the discussed coordinate transformation isz
′
(θ, z) = γ

(
z + Lm − β

(
θ−(k1+ku)z

k1
+ cti

))
,

t
′
(θ, z) = γ

c

(
θ−(k1+ku)z

k1
+ cti − β(z + Lm)

)
,

where ti is the time spent by the ion in the modulator, typ-
ically, it is of the order of ½ of the plasma osicllation:

ti ≡ ti(~v
′

0) = Lm
c + β~v0

′

~v
′
0c + βc2

,

Lm is the length of the modulator and ~v
′

0 is the ion’s ve-
locity, other quantities used are standard in the FEL theory
[7]. In all these formulas we used the dimensionless units
introduced before and all vectors are one-dimensional.

The 1D Maxwell-Vlasov System
The slowly varying frequency domain amplitude of the

radiation field Eν(z) and the electron density distribution
function F (θ, η, z), represented as a sum of a smooth back-
ground and a perturbation:

F (θ, η, z) = F0(η) + δF (θ, η, z),

are governed by the 1D Maxwell-Vlasov equations:{(
∂
∂z

+ i∆νku
)
Eν(z) = −χ2ne

∫
dηδFν(η, z),(

∂
∂z

+ 2kuη
∂
∂θ

)
δF (θ, η, z) = −χ1

∫
Eν(z)eiθνdν d

dη
F0(η),

where we wrote δF (θ, η, z) in the Maxwell equation, as the
smooth background doesn’t contribute to the electric field.
For other quantities used in the system we refer to [6, 7].
The continuity equation can be solved via the method of
unperturbed orbits:

δF (θ, η, z) = δF (θ(0)(0), η, 0)−

−χ1

z∫
0

∫
Eν(z1)eiθ

(0)(z1)νdνdz1
d

dη
F0(η), (6)

where the unperturbed orbit is given by:

θ(0) (z1) = θ + 2kuη (z1 − z) .

Then we plug this expression into the Maxwell equation
and solve it via the Laplace transform:

Eν(z) =
1

2πi

σ+i∞∫
σ−i∞

esz

D(s)

[
Eν(0)−

−χ2ne
2π

∞∫
0

∫ ∫
e−iνθ−sz2δF (θ(0)(0), η, 0)dθdηdz2

]
ds,

(7)

where

D(s) = s+ i∆νku − ρ̄3
∫

iν

(s+ 2ikuην)2
F0(η)dη,

and Eν(0) is the initial field, which we set to zero. To
obtain the expression for the dynamics of the density per-
turbation we plug the expression (7) for Eν(z) into the ex-
pression (6) for δF (θ, η, z). As the initial perturbation we
can either consider the Klimontovich distribution function
or the density perturbation formed in the modulator section.
The first case corresponds to the SASE and the second one
will give the dynamics of the amplification of the perturba-
tion in the FEL section. We consider them in order.

The SASE

As the initial perturbation we consider the Klimontovich
function:

δF (θ(0)(0), η, 0) =
1

Nλ

Ne∑
j=1

δ
(
θ(0)(0)− θj

)
δ
(
η − ηj

)
,

where Nλ = dλ1 Iece is the number of electrons on one ra-
diation wavelength and Ne is the number of electrons in
a bunch. θj and ηj are the initial phases and energies of
the electrons. For the θ-independent background distribu-
tion, θj is distributed uniformly over the bunch and ηj are
the random variables with the distribution function F0(η).
Following the route described in the previous subsection
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we obtain for the SASE density perturbation:

δn(θ, z) =
1

Nλ

Ne∑
j=1

δ
(
θ − 2kuηjz− θj

)
−

− Γ3

Nλ
F−1ν,θL

−1
s,z

Ne∑
j=1

ie−iνθ̂j(0)

2iνkuη̂j(0) + s

νe−sz

D(s)
I1(s, z, ν, ku),

(8)

where

I1(s, z, ν, ku) =

∫
1− ez(s+2ikuην) + sz + 2ikuzην

e2ikuzην(s + 2ikuην)2
F0(η)dη,

I2(s, ν, ku) =

∫
iν

(s + 2ikuην)2
F0(η)dη,

D(s) = s + i∆νku − Γ3I2(s, ν, ku), (9)

and Γ is our equivalent of the Pierce parameter defined via
Γ = (2χ1χ2r

−1
D neku)

1
3 , this definition is different from

the conventional one. In formula (8), we used the dimen-
sionless units. The saturation is reached when the SASE
perturbation is of the order of Ne

Nλ
. This solution can be

used for any equilibrium distribution F0(η). Here we ap-
ply it for the KV distribution F0(η) = δ(η) and obtain:

δn(θ, z) =
1

Nλ

Ne∑
j=1

δ
(
θ − 2kuηjz− θj

)
−

− Γ3

Nλ
F−1ν,θL

−1
s,z

Ne∑
j=1

e−iνθ̂j(0)

s

iνe−sz

D(s)

(1− ezs + sz)

s2
,

D(s) = s + i∆νku − Γ3 iν

s2
,

the inverse Laplace transform can be easily computed as
the sum over the residues at the roots of the denominator
and the inverse Fourier transform can be computed numer-
ically via the FFT.

The Smooth Density Perturbation
As the initial perturbation we can also use the perturba-

tion formed in the modulator:

δn(θ, 0) = n
(lab)
1 (θ, z = 0) ,

and

δF (θ(0)(0), η, 0) = δn
(
θ − 2kuηz, 0

)
F0(η).

Following the procedure described in the beginning of this
section, after quite lengthy computations we obtain:

δn(θ, z) = n1
(
z
′
(θ − 2kuηz, 0), t

′
(θ − 2kuηz, 0)

)
+

+
χ̃12ne
i

L−1s,z F
−1
ν,θF

−1
~k, LmrDγ

{∫ M(~k, s∗1(~k))eiνk1(cti−βLm)

2kuηγ
k1

(
s∗1(
~k)
c +~kβ

)
+ s
×

× F0(η)

D(s)
dη

∫
1− e2iη1kuνz−sz

2iη1kuν + s

d

dη1
F0(η1)dη1

}
, (10)

where χ̃12 and ne are the dimensionless equivalents of
χ1χ2 and ne, the electron volume density, respectively,
M(~k, s) is just the expression in square brackets in (3),
s∗1(~k) is defined via:

s∗1(~k) =
itpck1
γ

(
~kγβ

rDk1
+ ν

)
= iν

tpck1
γ

+ i~k
tpcβ

rD
,

D(s) is the same as in (9). F−1~k, LmrDγ
denotes the inverse

Fourier transform over ~k evaluated at Lm
rDγ

. The expression
(10) is valid for any equilibrium distribution F0(η). For the
KV distribution F0(η) = δ(η), we have:

δn(θ, z) = n1
(
z
′
(θ, 0), t

′
(θ, 0)

)
−

− Γ3F−1ν,θL
−1
s,z F

−1
~k, Lmγ

[
(1 + sz)e−sz − 1

s3D(s)
×

× M

(
~k, iν

ck1
γ

+ i~kcβ

)
νeiνk1(cti−βLm)

]
,

as for the SASE case, the inverse Laplace transform can be
easily computed as the sum over the residues at the roots of
the denominator and the inverse Fourier transforms can be
computed numerically via the FFT.

THE KICKER
In the kicker, the hadrons interact with the electric field

produced by their own amplified density perturbations [8].
Mathematically, the problem is very similar to the one
solved for the modulator, but, in the kicker, as initial den-
sity perturbation we have the hadron’s charge and the am-
plified electron density from the FEL section. Solving for
the Fourier image of the density perturbation, we can easily
obtain the potential of the field in the Fourier domain. And
then, doing the inverse Fourier transform we can compute
the potential in the space domain.

RESULTS AND DISCUSSION
In the present article, we proposed a theoretical model

for the coherent electron cooling device. The modulator
section is described in the infinite beam approximation and
solved via the inverse integral transforms [3]. For the 1D
Cauchy distribution, it is possible to compute these trans-
forms analytically, for other distributions they can be com-
puted via the FFT, there is a perfect agreement of the an-
alytical and numerical results for a variety of parameter’s
values. The FEL section is described in the framework of
the 1D FEL theory, it is possible to extend this descrip-
tion to the 3D FEL theory. The expressions for the am-
plified density perturbation and the SASE contribution are
derived. Both of them are written using the inverse inte-
gral transforms, which can be computed numerically in the
same way as it was done for the modulator section. The
computation of the SASE contribution allows one to es-
timate the limitations of the amplification of the density
modulation in the FEL section. The kicker can be described
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in a very similar way as the modulator. This completes our
model of the CeC. The numerical methods required for the
computations for the every section are thoroughly tested
(see Fig. 2 and [3]) in the modulator section and, undoubt-
edly, can be applied in other sections.
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