Author: Will, I.
Paper Title Page
MOOBNO02
FEL Operation With the Superconducting RF Photo Gun at ELBE  
 
  • J. Teichert, A. Arnold, H. Büttig, M. Justus, U. Lehnert, P.N. Lu, P. Michel, P. Murcek, R. Schurig, W. Seidel, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
  • T. Kamps, J. Rudolph
    HZB, Berlin, Germany
  • I. Will
    MBI, Berlin, Germany
 
  The superconducting RF photoinjector (SRF gun) operating with a 31/2-cell niobium cavity and Cs2Te photocathodes is installed at the ELBE radiation center. The gun provides beams for ELBE as well as in a separate diagnostics beam line for beam parameter measurements. Since 2012 a new UV driver laser system developed by MBI has been installed for the SRF gun . It delivers CW or bust mode pulses with 13 MHz repetition rate or with reduced rates of 500, 200, and 100 kHz at an average UV power of about 1 W. The new laser allows the gun to serve as the driver for the infrared FELs at ELBE. In the first successful experiment a 250 μA beam with 3.3 MeV from SRF gun was injected into ELBE, further accelerated in the ELBE superconducting linac modules and then guided to the U100 undulator. First lasing was achieved at the wavelength of 41 μm. The spectrum, detuning curve and further parameters were measured.  
slides icon Slides MOOBNO02 [7.458 MB]  
 
MOPSO76 FEL Operation With the Superconducting RF Photo Gun at ELBE 136
 
  • J. Teichert, A. Arnold, H. Büttig, M. Justus, U. Lehnert, P.N. Lu, P. Michel, P. Murcek, R. Schurig, W. Seidel, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
  • T. Kamps, J. Rudolph
    HZB, Berlin, Germany
  • I. Will
    MBI, Berlin, Germany
 
  The superconducting RF photoinjector (SRF gun) operating with a 31/2-cell niobium cavity and Cs2Te photocathodes is installed at the ELBE radiation center. The gun provides beams for ELBE as well as in a separate diagnostics beam line for beam parameter measurements. Since 2012 a new UV driver laser system developed by MBI has been installed for the SRF gun . It delivers CW or bust mode pulses with 13 MHz repetition rate or with reduced rates of 500, 200, and 100 kHz at an average UV power of about 1 W. The new laser allows the gun to serve as the driver for the infrared FELs at ELBE. In the first successful experiment a 250 μA beam with 3.3 MeV from SRF gun was injected into ELBE, further accelerated in the ELBE superconducting linac modules and then guided to the U100 undulator. First lasing was achieved at the wavelength of 41 μm. The spectrum, detuning curve and further parameters were measured.  
 
TUOANO04 PITZ Experience on the Experimental Optimization of the RF Photo Injector for the European XFEL 160
 
  • M. Krasilnikov, H.-J. Grabosch, M. Groß, L. Hakobyan, I.I. Isaev, L. Jachmann, M. Khojoyan, W. Köhler, M. Mahgoub, D. Malyutin, A. Oppelt, M. Otevřel, B. Petrosyan, A. Shapovalov, F. Stephan, G. Vashchenko, S. Weidinger, R.W. Wenndorff
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • K. Flöttmann, M. Hoffmann, G. Klemz, S. Lederer, H. Schlarb, S. Schreiber
    DESY, Hamburg, Germany
  • Ye. Ivanisenko
    PSI, Villigen PSI, Switzerland
  • M.A. Nozdrin
    JINR, Dubna, Moscow Region, Russia
  • V.V. Paramonov
    RAS/INR, Moscow, Russia
  • D. Richter
    HZB, Berlin, Germany
  • S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • I.H. Templin, I. Will
    MBI, Berlin, Germany
 
  The Photo Injector Test facility at DESY, Zeuthen site (PITZ), develops high brightness electron sources for modern free electron lasers. A continuous experimental optimization of the L-band photo injector for such FEL facilities like FLASH and the European XFEL has been performed for a wide range of electron bunch charges – from 20 pC to 2 nC – yielding very small emittance values for all charge levels. Experience and results of the experimental optimization will be presented in comparison with beam dynamics simulations. The influence of various parameters onto the photo injector performance will be discussed.
Phys. Rev. ST Accel. Beams 15, 100701 (2012)
 
slides icon Slides TUOANO04 [3.126 MB]