Author: Schietinger, T.
Paper Title Page
MOPSO77 Timing Jitter Measurements of the SwissFEL Test Injector 140
 
  • C. Vicario, B. Beutner, M.C. Divall, C.P. Hauri, S. Hunziker, M.G. Kaiser, M. Luethi, M. Pedrozzi, T. Schietinger
    PSI, Villigen PSI, Switzerland
  • C.P. Hauri
    EPFL, Lausanne, Switzerland
 
  To reach nominal bunch compression and FEL performance of SwissFEL with stable beam conditions for the users, less than 40fs relative rms jitter is required from the injector. Phase noise measurement of the gun laser oscillator shows an exceptional 30fs integrated rms jitter. We present these measurements and analyze the contribution to the timing jitter and drift from the rest of the laser chain. These studies were performed at the SwissFEL injector test facility, using the rising edge of the Schottky-scan curve and on the laser system using fast digital signal analyzer and photodiode, revealing a residual jitter of 150fs at the cathode from the pulsed laser amplifier and beam transport, measured at 10Hz. Spectrally resolved cross-correlation technique will also be reviewed here as a future solution of measuring timing jitter at 100Hz directly against the pulsed optical timing link with an expected resolution in the order of 50fs. This device will provide the signal for feedback systems compensating for long term timing drift of the laser for the gun as well as for the pulsed lasers at the experimental stations.  
 
TUOCNO06 Slice Emittance Optimization at the SwissFEL Injector Test Facility 200
 
  • E. Prat, M. Aiba, S. Bettoni, B. Beutner, M.W. Guetg, R. Ischebeck, S. Reiche, T. Schietinger
    PSI, Villigen PSI, Switzerland
 
  Slice emittance measurements in the SwissFEL injector test facility have demonstrated emittances for the 10pC-200pC bunch charges which are well below the tight requirements of SwissFEL. Results, emittance tuning strategy and measurement methods are reported.  
slides icon Slides TUOCNO06 [0.537 MB]  
 
TUPSO21 SwissFEL Cathode Load-lock System 259
 
  • R. Ganter, M. Bopp, N. Gaiffi, T. Le Quang, M. Pedrozzi, M. Schaer, T. Schietinger, L. Schulz, L. Stingelin, A. Trisorio
    PSI, Villigen PSI, Switzerland
 
  The SwissFEL electron source is an RF photo-injector in which the photo-cathode plug can be exchanged. Without load-lock, the cathode exchange takes about one week and cathode surface gets contaminated in the atmosphere during installation, leading to unpredictable quantum efficiency (QE) fluctuations. This motivated the construction of a load lock system to prepare and insert cathodes in the photo-injector. This load lock system consists of three parts: the preparation chamber, the transportable vacuum suitcase and the gun load lock chamber. This three parts system gives the possibility to prepare the cathode surface with methods like vacuum firing and plasma cleaning. The QE can be checked and the plug can be inserted in the gun without breaking vacuum. This will allow establishing an optimized a reproducible cathode preparation procedure. Since several cathodes can be loaded in advance, the exchange procedure reduces the machine shutdown to a few hours (shorter RF conditioning). The system is described and first experience with its use is reported.  
 
TUPSO86 Photocathode Laser Wavelength-tuning for Thermal Emittance and Quantum Efficiency Studies 434
 
  • C. Vicario, S. Bettoni, B. Beutner, M.C. Divall, C.P. Hauri, E. Prat, T. Schietinger, A. Trisorio
    PSI, Villigen PSI, Switzerland
 
  SwissFEL compact design is based on extremely low emittance electron beam from an RF photoinjector. Proper temporal and spatial shaping of the photocathode drive laser is employed to reduce the space charge emittance contribution. However, the ultimate limit for the beam emittance is the thermal emittance, which depends on the excess energy of the emitted photoelectrons. By varying the photocathode laser wavelength it is possible to reduce the thermal emittance. For this purpose, we developed a tunable Ti:sapphire laser and an optical parametric amplifier which allow to scan the wavelength between 250 and 305 nm. The system permits to study the thermal emittance and the quantum efficiency evolution as function of the laser wavelength for the copper photocathode in the RF gun of the SwissFEL injector test facility. The results are presented and discussed.