Author: Rudolph, J.
Paper Title Page
MOOBNO02
FEL Operation With the Superconducting RF Photo Gun at ELBE  
 
  • J. Teichert, A. Arnold, H. Büttig, M. Justus, U. Lehnert, P.N. Lu, P. Michel, P. Murcek, R. Schurig, W. Seidel, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
  • T. Kamps, J. Rudolph
    HZB, Berlin, Germany
  • I. Will
    MBI, Berlin, Germany
 
  The superconducting RF photoinjector (SRF gun) operating with a 31/2-cell niobium cavity and Cs2Te photocathodes is installed at the ELBE radiation center. The gun provides beams for ELBE as well as in a separate diagnostics beam line for beam parameter measurements. Since 2012 a new UV driver laser system developed by MBI has been installed for the SRF gun . It delivers CW or bust mode pulses with 13 MHz repetition rate or with reduced rates of 500, 200, and 100 kHz at an average UV power of about 1 W. The new laser allows the gun to serve as the driver for the infrared FELs at ELBE. In the first successful experiment a 250 μA beam with 3.3 MeV from SRF gun was injected into ELBE, further accelerated in the ELBE superconducting linac modules and then guided to the U100 undulator. First lasing was achieved at the wavelength of 41 μm. The spectrum, detuning curve and further parameters were measured.  
slides icon Slides MOOBNO02 [7.458 MB]  
 
MOPSO76 FEL Operation With the Superconducting RF Photo Gun at ELBE 136
 
  • J. Teichert, A. Arnold, H. Büttig, M. Justus, U. Lehnert, P.N. Lu, P. Michel, P. Murcek, R. Schurig, W. Seidel, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
  • T. Kamps, J. Rudolph
    HZB, Berlin, Germany
  • I. Will
    MBI, Berlin, Germany
 
  The superconducting RF photoinjector (SRF gun) operating with a 31/2-cell niobium cavity and Cs2Te photocathodes is installed at the ELBE radiation center. The gun provides beams for ELBE as well as in a separate diagnostics beam line for beam parameter measurements. Since 2012 a new UV driver laser system developed by MBI has been installed for the SRF gun . It delivers CW or bust mode pulses with 13 MHz repetition rate or with reduced rates of 500, 200, and 100 kHz at an average UV power of about 1 W. The new laser allows the gun to serve as the driver for the infrared FELs at ELBE. In the first successful experiment a 250 μA beam with 3.3 MeV from SRF gun was injected into ELBE, further accelerated in the ELBE superconducting linac modules and then guided to the U100 undulator. First lasing was achieved at the wavelength of 41 μm. The spectrum, detuning curve and further parameters were measured.