Author: Reinsch, M.W.
Paper Title Page
MOPSO51 Feasibility of an XUV FEL Oscillator at ASTA 88
 
  • A.H. Lumpkin
    Fermilab, Batavia, USA
  • H. Freund
    LANL, Los Alamos, New Mexico, USA
  • M.W. Reinsch
    LBNL, Berkeley, California, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
A significant opportunity exists at the Advanced Superconducting Test Accelerator (ASTA) facility presently under construction at Fermilab to enable the first XUV free electron laser (FEL) oscillator experiments. The ultrabright beam from the L-band photoinjector will provide sufficient gain to compensate for reduced mirror reflectances in the VUV-XUV regimes, the 3-MHz micropulse repetition rate for 1 ms will support an oscillator configuration, the SCRF linac will provide stable energy, and the eventual GeV-scale energy with three TESLA-type cryomodules will satisfy the FEL resonance condition in the XUV regime. Concepts based on combining such beams with a 5-cm-period undulator and optical resonator cavity for an FEL oscillator are described. We used the 68% reflectances for normal incidence on multilayer metal mirrors developed at LBNL*. Initial simulations using GINGER with an oscillator module and MEDUSA:OPC show saturation for the 13.4-nm case after 300 and 350 passes, respectively,of the 3000 pulses. Initially, VUV experiments could begin in the 180- to 120-nm regime using MgF2-coated Al mirrors with only one cryomodule installed and beam energies of 250-300 MeV.
*LBNL X-ray optics site: http://xdb.lbl.gov/Section4
 
 
MOPSO66 Start-to-end Simulation of a Next Generation Light Source Using the Real Number of Electrons 112
 
  • J. Qiang, J.N. Corlett, P. Emma, C.E. Mitchell, C. F. Papadopoulos, G. Penn, M.W. Reinsch, R.D. Ryne, M. Venturini
    LBNL, Berkeley, California, USA
  • S. Reiche
    PSI, Villigen PSI, Switzerland
 
  Funding: This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Start-to-end simulation plays an important role in design and optimization of next generation light sources. In this paper, we will present start-to-end (from the photocathode to the end of undulator) simulations of a high repetition rate FEL-based Next Generation Light Source driven by CW superconducting linac with the real number of electrons (~2 billion electrons/bunch) using the multi-physics parallel beam dynamics code IMPACT. We will discuss challenges, numerical methods and physical models used in the simulation. We will also present simulation results of a beam transporting through photoinjector, beam delivery system, and final X-ray FEL radiation.
 
 
TUOCNO05 Design Concepts for a Next Generation Light Source at LBNL 193
 
  • J.N. Corlett, A.P. Allezy, D. Arbelaez, K.M. Baptiste, J.M. Byrd, C.S. Daniels, S. De Santis, W.W. Delp, P. Denes, R.J. Donahue, L.R. Doolittle, P. Emma, D. Filippetto, J.G. Floyd, J.P. Harkins, G. Huang, J.-Y. Jung, D. Li, T.P. Lou, T.H. Luo, G. Marcus, M.T. Monroy, H. Nishimura, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, S. Paret, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, H.J. Qian, J. Qiang, A. Ratti, M.W. Reinsch, D. Robin, F. Sannibale, R.W. Schoenlein, C. Serrano, J.W. Staples, C. Steier, C. Sun, M. Venturini, W.L. Waldron, W. Wan, T. Warwick, R.P. Wells, R.B. Wilcox, S. Zimmermann, M.S. Zolotorev
    LBNL, Berkeley, California, USA
  • C. Adolphsen, K.L.F. Bane, Y. Ding, Z. Huang, C.D. Nantista, C.-K. Ng, H.-D. Nuhn, C.H. Rivetta, G.V. Stupakov
    SLAC, Menlo Park, California, USA
  • D. Arenius, G. Neil, T. Powers, J.P. Preble
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, A.L. Klebaner, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The NGLS collaboration is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately 1 MHz. The CW superconducting linear accelerator design is based on developments of TESLA and ILC technology, and is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from femtoseconds and shorter, to hundreds of femtoseconds. In this paper we describe current design concepts, and progress in R&D activities.
 
slides icon Slides TUOCNO05 [5.982 MB]  
 
WEPSO48 Simulation Studies of FELs for a Next Generation Light Source 609
 
  • G. Penn, P. Emma, G. Marcus, J. Qiang, M.W. Reinsch
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Several possible FEL beamlines for a Next Generation Light Source are studied. These beamlines collectively cover a wide range of photon energies and pulse lengths. Microbunching and transverse offsets within the electron beam, generated through the linac, have the potential to significantly impact the longitudinal and transverse coherence of the x-ray pulses. We evaluate these effects and set tolerances on beam properties required to obtain the desired properties of the x-ray pulses.
 
 
THOBNO01 Three Unique FEL Designs for the Next Generation Light Source 734
 
  • G. Penn, D. Arbelaez, J.N. Corlett, P. Emma, G. Marcus, S. Prestemon, M.W. Reinsch, R.B. Wilcox
    LBNL, Berkeley, California, USA
  • A. Zholents
    ANL, Argonne, USA
 
  The NGLS is a next generation light source initiative spearheaded by the Lawrence Berkeley National Laboratory and based on an array of free-electron lasers (FEL) driven by a CW, 1-MHz bunch rate, superconducting linear accelerator. The facility is being designed to produce high peak and high average brightness coherent soft x-rays in the wavelength range of 1-12 nm, with shorter wavelengths accessible in harmonics or in expansion FELs. The facility performance requirements are based on a wide spectrum of scientific research objectives, requiring high flux, narrow-to-wide bandwidth, broad wavelength tunability, femtosecond pulse durations, and two-color pulses with variable relative timing and polarization, all of which cannot be encompassed in one FEL design. In addition, the cost of the facility requires building in a phased approach with perhaps three initial FELs and up to 9-10 FELs in the long term. We describe three very unique and complimentary FEL designs here as candidates for the first NGLS configuration.  
slides icon Slides THOBNO01 [1.331 MB]