Author: Ratner, D.F.
Paper Title Page
MOPPNO02
Shot Noise Suppression in Linac Beams  
 
  • D.F. Ratner
    SLAC, Menlo Park, California, USA
 
  Shot noise in an electron beam can affect the performance of FELs by driving instabilities (e.g., the microbunching instability) or by competing with seeded density modulations. However, it is possible to manipulate, and even suppress, the shot noise level to enhance beam performance [1-2]. This talk will present an analytical framework for one approach to noise suppression, using dispersive regions to tune the beam below the shot noise level [3]. Experimental observations of noise suppression will be shown [4-5], along with prospects for future studies and applications.  
slides icon Slides MOPPNO02 [4.645 MB]  
 
WEPSO27 Recent LCLS Performance From 250 to 500 eV 554
 
  • R.H. Iverson, J. Arthur, U. Bergmann, C. Bostedt, J.D. Bozek, A. Brachmann, W.S. Colocho, F.-J. Decker, Y. Ding, Y. Feng, J.C. Frisch, J.N. Galayda, T. Galetto, Z. Huang, E.M. Kraft, J. Krzywinski, J.C. Liu, H. Loos, X.S. Mao, S.P. Moeller, H.-D. Nuhn, A.A. Prinz, D.F. Ratner, T.O. Raubenheimer, S.H. Rokni, W.F. Schlotter, P.M. Schuh, T.J. Smith, M. Stanek, P. Stefan, M.K. Sullivan, J.L. Turner, J.J. Turner, J.J. Welch, J. Wu, F. Zhou
    SLAC, Menlo Park, California, USA
  • P. Emma
    LBNL, Berkeley, California, USA
  • R. Soufli
    LLNL, Livermore, California, USA
 
  Funding: Work supported by US Department of Energy contract DE-AC02-76SF00515 and BES.
The Linac Coherent Light Source is an X-ray free-electron laser at the SLAC National Accelerator Laboratory. It produces coherent soft and hard X-rays with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources and a range of pulse durations from 500 to <10 fs. The facility has been operating at X-ray energy from 500 to 10,000eV. Users have expressed great interest in doing experiments with X-Rays near the carbon absorption edge at 284eV. We describe the operation and performance of the LCLS in the newly established regime between 250 and 500eV.
[1] Emma, P. et al., “First lasing and operation of an ˚angstrom-wavelength free-electron laser,” Nature Pho-
ton. 4(9), 641–647 (2010).
 
 
WEPSO53 Harmonic Lasing at the LCLS 623
 
  • D.F. Ratner, Z. Huang, P.A. Montanez
    SLAC, Menlo Park, California, USA
  • E. Allaria
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • W.M. Fawley, L.N. Rodes
    LBNL, Berkeley, California, USA
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  Funding: Department of Energy
The LCLS beamlines deliver X-rays to users at photon energies up to 24 keV. With the fundamental wavelength limited to around 10 keV, there is user interest in the third harmonic, which can reach a few percent of the total beam power. McNeil et al* and Schneidmiller and Yurkov** have showed that introducing phase shifts or attenuators into the undulator line can increase harmonic power by driving lasing at the third harmonic. With the development of self-seeding chicanes, LCLS is now in position for a proof-of-principle experiment. Here we present simulations and plans for an experimental test following commissioning of the Soft X-ray Self-Seeding system.
*B.W.J. McNeil, G.R.M. Robb, M.W. Poole and N.R. Thompson, Phys. Rev. Lett., 96 084801 (2006)
**E. Schneidmiller and M. Yurkov, PR-STAB, 14 080702 (2012)