Author: Qian, H.J.
Paper Title Page
TUOCNO05 Design Concepts for a Next Generation Light Source at LBNL 193
 
  • J.N. Corlett, A.P. Allezy, D. Arbelaez, K.M. Baptiste, J.M. Byrd, C.S. Daniels, S. De Santis, W.W. Delp, P. Denes, R.J. Donahue, L.R. Doolittle, P. Emma, D. Filippetto, J.G. Floyd, J.P. Harkins, G. Huang, J.-Y. Jung, D. Li, T.P. Lou, T.H. Luo, G. Marcus, M.T. Monroy, H. Nishimura, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, S. Paret, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, H.J. Qian, J. Qiang, A. Ratti, M.W. Reinsch, D. Robin, F. Sannibale, R.W. Schoenlein, C. Serrano, J.W. Staples, C. Steier, C. Sun, M. Venturini, W.L. Waldron, W. Wan, T. Warwick, R.P. Wells, R.B. Wilcox, S. Zimmermann, M.S. Zolotorev
    LBNL, Berkeley, California, USA
  • C. Adolphsen, K.L.F. Bane, Y. Ding, Z. Huang, C.D. Nantista, C.-K. Ng, H.-D. Nuhn, C.H. Rivetta, G.V. Stupakov
    SLAC, Menlo Park, California, USA
  • D. Arenius, G. Neil, T. Powers, J.P. Preble
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, A.L. Klebaner, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The NGLS collaboration is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately 1 MHz. The CW superconducting linear accelerator design is based on developments of TESLA and ILC technology, and is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from femtoseconds and shorter, to hundreds of femtoseconds. In this paper we describe current design concepts, and progress in R&D activities.
 
slides icon Slides TUOCNO05 [5.982 MB]  
 
TUPSO15 Beam Diagnostic Requirements for the Next Generation Light Source 242
 
  • S. De Santis, J.M. Byrd, J.N. Corlett, P. Emma, D. Filippetto, M. Placidi, H.J. Qian, F. Sannibale
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The NGLS project consists in a 2.4 GeV superconducting linac accelerating sub-1 μm normalized emittance bunches used to produce high intensity soft X-ray short pulses from multiple FEL beamlines. The 1 MHz bunch repetition rate, and the consequent high beam power, present special challenges, but also opportunities, in the design of the various electron beam diagnostic devices. The wide range of beam characteristics, from the photoinjector to the undulators, require the adoption of different diagnostics optimized to each machine section and to the specific application of each individual measurement. In this paper we present our plans for the NGLS beam diagnostics, discussing the special requirements and challenges.
 
 
TUPSO19 The Photocathode Laser System for the APEX High Repetition Rate Photoinjector 255
 
  • D. Filippetto, L.R. Doolittle, G. Huang, G. Marcus, H.J. Qian, F. Sannibale
    LBNL, Berkeley, California, USA
 
  Funding: DOE grants No. DE-AC02-05CH11231.
The APEX injector has been built and commissioned at LBNL. A CW-RF Gun accelerates electron bunches to up 750 keV at MHz repetition rate. Different high efficiency photocathodes with different work functions are being tested with the help of a load lock system. The photocathode drive laser is thus conceived to provide up to 40 nJ per pulse in the UV and 200 nJ per pulse in the green at 1 MHz, with transverse and longitudinal shaping (flat top, up to 60 ps) for electron beam creation. A transfer line of about 15 meters has been designed and optimized for minimal jitters. Remote control of repetition rate, energy and position have been implemented on the system, together with offline and online diagnostic for beam monitoring. Here we present the laser system setup as well as the first measurements on longitudinal pulse shaping and jitter characterization.
 
 
TUPSO69 Injector Design Studies for NGLS 391
 
  • C. F. Papadopoulos, P. Emma, D. Filippetto, H.J. Qian, F. Sannibale, M. Venturini, R.P. Wells
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
The APEX project at LBNL is developing an electron injector to operate a high repetition rate x-ray FEL. The injector is based on the VHF gun, a high-brightness, high-repetition-rate photocathode electron gun presently under test at LBNL. The design of the injector is particularly critical because it has to take the relatively low energy beam from the VHF gun, accelerate it at more relativistic energies while simultaneously preserving high-brightness and performing longitudinal compression. The present status of the APEX injector design studies is presented.
 
 
TUPSO78 Design of a Collimation System for the Next Generation Light Source at LBNL 410
 
  • C. Steier, P. Emma, H. Nishimura, C. F. Papadopoulos, H.J. Qian, F. Sannibale, C. Sun
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The planned Next Generation Light Source at LBNL is designed to deliver MHz repetition rate electron beams to an array of free electron lasers. Because of the high beam power approaching one MW in such a facility, effective beam collimation is extremely important to minimize radiation damage, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. We describe the conceptual design of a collimation system, including detailed simulations to verify its effectiveness.