Author: Piot, P.
Paper Title Page
MOPSO07 Channeling Radiation With Low-Energy Electron Beams: Experimental Plans and Status at Fermilab 38
 
  • B.R. Blomberg, D. Mihalcea, H. Panuganti, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • C.A. Brau, B.K. Choi, B.L. Ivanov, M.H. Mendenhall
    Vanderbilt University, Nashville, USA
  • W.E. Gabella
    Vanderbilt University, W.M. Keck Foundation Free-Electron Laser Center, Nashville, USA
  • W.S. Wagner
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
 
  Funding: This work was supported by the DARPA Axis program under contract AXIS N66001-11-1-4196 with Vanderbilt University and Northern Illinois University.
Channeling radiation is an appealing radiation process to produce x-ray radiation with low-energy electron beams. In this contribution we describe the anticipated performance and preliminary results from a channeling radiation experiment to produce ~ 1.2-keV radiation from a ~ 4-MeV electron beam at Fermilab's high-brightness electron source lab(HBESL). We also discuss plans to produce X-ray radiation ([10,80]-keV photon energy) at Fermilab's advanced superconducting test accelerator (ASTA).
 
 
TUPSO74 A Coaxially Coupled Deflecting-accelerating Mode Cavity System for Phase-space Exchange (PSEX) 395
 
  • Y.-M. Shin, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • M.D. Church
    Fermilab, Batavia, USA
  • J.H. Park, A.M.M. Todd
    AES, Medford, NY, USA
 
  A feasible method to readily remove energy spread (R56 term) due to thick lens effect of a deflecting mode RF-cavity has been widely investigated for emittance exchange in 6D phase-space*,**. By means of theoretical calculation and numerical analysis, it was found that an accelerating cavity effectively cancel the longitudinal phase space chirp. We have extensively investigated the combined deflecting-accelerating mode phase-space exchanger with the simple RF distribution system of the beam-pipe coaxial coupler. EM simulations proved the coupling scheme with eigenmode and S-parameter analyses. Currently we are looking into 3D beam dynamics in the system with tracking/particle-in-cell (PIC) simulations and wakefield analysis. Proof-of-concept (POC) experiment is planned with a high-Q normal conducting cavity built in a cryogenic cooling system (liquid nitrogen) in Fermilab.
* P. Emma, et. al., Phys. Rev. ST Accel. Beams 9, 100702 (2006)
** Zholents and M. Zolotorev, LBNL CBP Seminar (2010) and No. ANL/APS/LS-327(2011)
 
 
WEPSO24 Compact XFEL Light Source 757
 
  • W.S. Graves, K.K. Berggren, F.X. Kaertner, D.E. Moncton
    MIT, Cambridge, Massachusetts, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work was supported by DARPA grant N66001-11-1-4192, CFEL DESY, DOE grants DE-FG02-10ER46745, and NSF grant DMR-1042342.
X-ray free electron laser studies are presented that rely on a nanostructured electron beam interacting with a “laser undulator” configured in the head-on inverse Compton scattering geometry. The structure in the electron beam is created by a nanoengineered cathode that produces a transversely modulated electron beam. Electron optics demagnify the modulation period and then an emittance exchange line translates the modulation to the longitudinal direction resulting in coherent bunching at x-ray wavelength. The predicted output radiation at 1 keV from a 7 MeV electron beam reaches 10 nJ or 6X108 photons per shot and is fully coherent in all dimensions, a result of the dominant mode growth transversely and the longitudinal coherence imposed by the electron beam nanostructure. This output is several orders of magnitude higher than incoherent inverse Compton scattering and occupies a much smaller phase space volume, reaching peak brilliance of 1027 and average brilliance of 1017 photons/(mm2 mrad2 0.1% sec).