Author: Padmore, H.A.
Paper Title Page
TUOCNO05 Design Concepts for a Next Generation Light Source at LBNL 193
 
  • J.N. Corlett, A.P. Allezy, D. Arbelaez, K.M. Baptiste, J.M. Byrd, C.S. Daniels, S. De Santis, W.W. Delp, P. Denes, R.J. Donahue, L.R. Doolittle, P. Emma, D. Filippetto, J.G. Floyd, J.P. Harkins, G. Huang, J.-Y. Jung, D. Li, T.P. Lou, T.H. Luo, G. Marcus, M.T. Monroy, H. Nishimura, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, S. Paret, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, H.J. Qian, J. Qiang, A. Ratti, M.W. Reinsch, D. Robin, F. Sannibale, R.W. Schoenlein, C. Serrano, J.W. Staples, C. Steier, C. Sun, M. Venturini, W.L. Waldron, W. Wan, T. Warwick, R.P. Wells, R.B. Wilcox, S. Zimmermann, M.S. Zolotorev
    LBNL, Berkeley, California, USA
  • C. Adolphsen, K.L.F. Bane, Y. Ding, Z. Huang, C.D. Nantista, C.-K. Ng, H.-D. Nuhn, C.H. Rivetta, G.V. Stupakov
    SLAC, Menlo Park, California, USA
  • D. Arenius, G. Neil, T. Powers, J.P. Preble
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, A.L. Klebaner, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The NGLS collaboration is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately 1 MHz. The CW superconducting linear accelerator design is based on developments of TESLA and ILC technology, and is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from femtoseconds and shorter, to hundreds of femtoseconds. In this paper we describe current design concepts, and progress in R&D activities.
 
slides icon Slides TUOCNO05 [5.982 MB]  
 
TUPSO76 In Situ Characterization of ALKALI Antimonide Photocathodes 403
 
  • J. Smedley, K. Attenkofer, S.G. Schubert
    BNL, Upton, Long Island, New York, USA
  • I. Ben-Zvi, X. Liang, E.M. Muller, M. Ruiz-Osés
    Stony Brook University, Stony Brook, USA
  • M. DeMarteau
    Fermilab, Batavia, USA
  • H.A. Padmore, J.J. Wong
    LBNL, Berkeley, California, USA
  • A.R. Woll
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J. Xie
    ANL, Argonne, USA
 
  Funding: The authors wish to acknowledge the support of the US DOE, under Contract No. KC0407-ALSJNT-I0013, DE-AC02-98CH10886 and DE-SC0005713. Use of CHESS is supported by NSF award DMR-0936384.
Alkali antimonide photocathodes are a prime candidate for use in high-brightness photoinjectors of free electron lasers and 4th generation light sources. These materials have complex growth kinetics - many methods exist for forming the compounds, each with different grain size, roughness, and crystalline texture. These parameters impact the performance of the cathodes, including efficiency, intrinsic emittance and lifetime. In situ analysis of the growth of these materials has allowed investigation of correlations between cathode structure and growth parameters and the resulting quantum efficiency (QE). The best cathodes have a QE at 532 nm in excess of 6% and are structurally textured K2CsSb with grain sizes in excess of 20 nm. X-ray reflection (XRR) has been used to characterize the roughness evolution of the cathode, while X-ray Diffraction (XRD) has been used to characterize the texture, grain size and stoichometry.
 
 
TUPSO83 Quantum Efficiency and Transverse Momentum From Metals 424
 
  • T. Vecchione, D. Dowell
    SLAC, Menlo Park, California, USA
  • J. Feng, H.A. Padmore, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by US DOE contracts DE-AC02-05CH11231, KC0407-ALSJNT-I0013, and DE-SC000571.
QE and transverse momentum are key parameters limiting the achievable brightness of FELs. Despite the importance, little data is available to substantiate current models. Expressions for each and experimental confirmation of each expression with respect to excess energy are presented. Novel instrumentation and analysis techniques developed are described.