Author: Nuhn, H.-D.
Paper Title Page
TUOCNO05 Design Concepts for a Next Generation Light Source at LBNL 193
 
  • J.N. Corlett, A.P. Allezy, D. Arbelaez, K.M. Baptiste, J.M. Byrd, C.S. Daniels, S. De Santis, W.W. Delp, P. Denes, R.J. Donahue, L.R. Doolittle, P. Emma, D. Filippetto, J.G. Floyd, J.P. Harkins, G. Huang, J.-Y. Jung, D. Li, T.P. Lou, T.H. Luo, G. Marcus, M.T. Monroy, H. Nishimura, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, S. Paret, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, H.J. Qian, J. Qiang, A. Ratti, M.W. Reinsch, D. Robin, F. Sannibale, R.W. Schoenlein, C. Serrano, J.W. Staples, C. Steier, C. Sun, M. Venturini, W.L. Waldron, W. Wan, T. Warwick, R.P. Wells, R.B. Wilcox, S. Zimmermann, M.S. Zolotorev
    LBNL, Berkeley, California, USA
  • C. Adolphsen, K.L.F. Bane, Y. Ding, Z. Huang, C.D. Nantista, C.-K. Ng, H.-D. Nuhn, C.H. Rivetta, G.V. Stupakov
    SLAC, Menlo Park, California, USA
  • D. Arenius, G. Neil, T. Powers, J.P. Preble
    JLAB, Newport News, Virginia, USA
  • C.M. Ginsburg, R.D. Kephart, A.L. Klebaner, T.J. Peterson, A.I. Sukhanov
    Fermilab, Batavia, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The NGLS collaboration is developing design concepts for a multi-beamline soft x-ray FEL array powered by a superconducting linear accelerator, operating with a high bunch repetition rate of approximately 1 MHz. The CW superconducting linear accelerator design is based on developments of TESLA and ILC technology, and is supplied by an injector based on a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches from the linac are distributed by RF deflecting cavities to the array of independently configurable FEL beamlines with nominal bunch rates of ~100 kHz in each FEL, with uniform pulse spacing, and some FELs capable of operating at the full linac bunch rate. Individual FELs may be configured for different modes of operation, including self-seeded and external-laser-seeded, and each may produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from femtoseconds and shorter, to hundreds of femtoseconds. In this paper we describe current design concepts, and progress in R&D activities.
 
slides icon Slides TUOCNO05 [5.982 MB]  
 
TUPSO52 R&D Towards a Delta-type Undulator for the LCLS 348
 
  • H.-D. Nuhn, S.D. Anderson, G.B. Bowden, Y. Ding, G.L. Gassner, Z. Huang, E.M. Kraft, Yu.I. Levashov, F. Peters, F.E. Reese, J.J. Welch, Z.R. Wolf, J. Wu
    SLAC, Menlo Park, California, USA
  • A.B. Temnykh
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The LCLS generates linearly polarized, intense, high brightness x-ray pulses from planar fixed-gap undulators. While the fixed-gap design supports a very successful and tightly controlled alignment concept, it provides only limited taper capability (up to 1% through canted pole and horizontal position adjustability) and lacks polarization control. The latter is of great importance for soft x-ray experiments. A new compact undulator design (Delta) has been developed and tested with a 30-cm-long in-vacuum prototype at Cornell University, which adds those missing properties to the LCLS undulator design and is readily adapted to the LCLS alignment concept. Tuning Delta undulators within tight, FEL type tolerances is a challenge due to the fact that the magnetic axis and the magnet blocks are not easily accessible for measurements and tuning in the fully assembled state. An R&D project is underway to install a 3.2-m long out-of-vacuum device in place of the last LCLS undulator, to provide controllable levels of polarized radiation and to develop measurement and tuning techniques to achieve x-ray FEL type tolerances. Presently, the installation of the device is scheduled for August 2013.  
 
WEPSO11 Coherent X-Ray Seeding Source for Driving FELs 522
 
  • A. Novokhatski, F.-J. Decker, R.O. Hettel, Z. Huang, H.-D. Nuhn, M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: "Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515
The success of the hard X-ray self-seeding experiment at the LCLS is very important in that it provided narrow, nearly transform-limited bandwidth from the FEL, fulfilling a beam quality requirement for experimental applications requiring highly monochromatic X-rays. Yet, because the HXRSS signal is generated random spikes of noise, it is not a truly continuous monochromatic seed signal and even higher FEL performance would be achieved using a continuous seed source. We propose developing such a source using an X-ray cavity to achieve a continuous, narrow band X-ray seed signal. This cavity consists of four crystals with corresponding Bragg angles of about 45 degrees for each. We will analyze and the interaction of X-rays and electron beams with this cavity. This source uses a train of electron bunches initially accelerated in a linear accelerator which then pass through a radiator element situated within an X-ray cavity. The number of bunches is proportional to the achievable Q-value of the X-ray cavity and may be in the range of 10-100. We do not need a high output power of X-ray beams, which leads to relaxed electron beam requirements. We will consider several options.
 
 
WEPSO27 Recent LCLS Performance From 250 to 500 eV 554
 
  • R.H. Iverson, J. Arthur, U. Bergmann, C. Bostedt, J.D. Bozek, A. Brachmann, W.S. Colocho, F.-J. Decker, Y. Ding, Y. Feng, J.C. Frisch, J.N. Galayda, T. Galetto, Z. Huang, E.M. Kraft, J. Krzywinski, J.C. Liu, H. Loos, X.S. Mao, S.P. Moeller, H.-D. Nuhn, A.A. Prinz, D.F. Ratner, T.O. Raubenheimer, S.H. Rokni, W.F. Schlotter, P.M. Schuh, T.J. Smith, M. Stanek, P. Stefan, M.K. Sullivan, J.L. Turner, J.J. Turner, J.J. Welch, J. Wu, F. Zhou
    SLAC, Menlo Park, California, USA
  • P. Emma
    LBNL, Berkeley, California, USA
  • R. Soufli
    LLNL, Livermore, California, USA
 
  Funding: Work supported by US Department of Energy contract DE-AC02-76SF00515 and BES.
The Linac Coherent Light Source is an X-ray free-electron laser at the SLAC National Accelerator Laboratory. It produces coherent soft and hard X-rays with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources and a range of pulse durations from 500 to <10 fs. The facility has been operating at X-ray energy from 500 to 10,000eV. Users have expressed great interest in doing experiments with X-Rays near the carbon absorption edge at 284eV. We describe the operation and performance of the LCLS in the newly established regime between 250 and 500eV.
[1] Emma, P. et al., “First lasing and operation of an ˚angstrom-wavelength free-electron laser,” Nature Pho-
ton. 4(9), 641–647 (2010).