Author: May, J.
Paper Title Page
WEPSO37 Femtosecond Fiber Timing Distribution System for the Linac Coherent Light Source 583
 
  • H. Li, P.H. Bucksbaum, J.C. Frisch, A.R. Fry, J. May, K. Muehlig, S.R. Smith
    SLAC, Menlo Park, California, USA
  • L. Chen, H.P.H. Cheng
    Idesta Quantum Electronics, New Jersey, USA
  • F.X. Kaertner
    CFEL, Hamburg, Germany
  • F.X. Kaertner
    MIT, Cambridge, Massachusetts, USA
  • A. Uttamadoss
    PU, Princeton, New Jersey, USA
 
  Funding: This work is supported by Department of Energy under STTR grant DE-C0004702.
We present the design and progress of a femtosecond fiber timing distribution system for the Linac Coherent Light Source (LCLS) at SLAC to enable the machine diagnostic at the 10 fs level. The LCLS at the SLAC is the world’s first hard x-ray free-electron laser (FEL) with unprecedented peak brightness and pulse duration. The time-resolved optical/x-ray pump-probe experiments on this facility open the era of exploring the ultrafast dynamics of atoms, molecules, proteins, and condensed matter. However, the temporal resolution of current experiments is limited by the time jitter between the optical and x-ray pulses. Recently, sub-25 fs rms jitter is achieved from an x-ray/optical cross-correlator at the LCLS, and external seeding is expected to reduce the intrinsic timing jitter, which would enable full synchronization of the optical and x-ray pulses with sub-10 fs precision. Of such a technique, synchronization between seed and pump lasers would be implemented. Preliminary test results of the major components for a 4 link system will be presented. Currently, the system is geared towards diagnostics to study the various sources of jitter at the LCLS.
*P. Emma et al.,Nat. Photonics 4,641-647(2010).
*J. Kim et al.,Opt. Lett,, 31,3659(2006).
*J. Kim et al.,Opt. Lett,, 32,1044(2007).
*J.Kim et al.,Nat. Photonics 2,733-736(2008).