Author: Carlson, K.
Paper Title Page
MOPSO70 Crystal Channeling Acceleration Research for High Energy Linear Collider at ASTA Facility 122
 
  • Y.-M. Shin
    Northern Illinois University, DeKalb, Illinois, USA
  • K. Carlson, M.D. Church, V.D. Shiltsev, D.A. Still
    Fermilab, Batavia, USA
  • J.C. Tobin
    UMD, College Park, Maryland, USA
 
  The density of charge carriers in solids is significantly higher than what was considered above in plasma, and correspondingly, the longitudinal fields of up to 10 TV/m are possible. It was suggested that particles are accelerated along major crystallographic directions, which provide a channeling effect in combination with low emittance determined by an Angstrom-scale aperture of the atomic “tubes.” However, the major challenge of this channeling acceleration is that ultimate acceleration gradients might require relativistic intensities at hard x-ray regime (~ 40 keV), exceeding those conceivable for x-rays as of today, though x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. However, the acceleration will take place only in a short time before full dissociation of the lattice. Carbon nanotubes have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration and possibly fast cooling. This talk will present past and current efforts on crystal acceleration research and discuss feasible experiments with the ASTA and beyond.