Author: Biedron, S.
Paper Title Page
MOPSO27 Study of CSR Effects in the Jefferson Laboratory FEL Driver 58
 
  • C.C. Hall, S. Biedron, T.A. Burleson, S.V. Milton, A.L. Morin
    CSU, Fort Collins, Colorado, USA
  • S.V. Benson, D. Douglas, P.E. Evtushenko, F.E. Hannon, R. Li, C. Tennant, S. Zhang
    JLAB, Newport News, Virginia, USA
  • B.E. Carlsten, J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the Office of Naval Research and the High Energy Laser Joint Technology. Jefferson Laboratory work also received supported under U.S. DOE Contract No. DE-AC05-06OR23177.
In a recent experiment conducted on the Jefferson Laboratory IR FEL driver the effects of Coherent Synchrotron Radiation (CSR) on beam quality were studied. The primary goal of this work was to explore CSR output and effect on the beam with variation of the bunch compression in the IR chicane. This experiment also provides a valuable opportunity to benchmark existing CSR models in a system that may not be fully represented by a 1-D CSR model. Here we present results from this experiment and compare to initial simulations of CSR in the magnetic compression chicane of the machine. Finally, we touch upon the possibility for CSR induced microbunching gain in the magnetic compression chicane, and show that parameters in the machine are such that it should be thoroughly damped.
 
 
WEPSO89 Design of a Resonator for the CSU THz FEL 719
 
  • P.J.M. van der Slot
    Mesa+, Enschede, The Netherlands
  • S. Biedron, S.V. Milton, P.J.M. van der Slot
    CSU, Fort Collins, Colorado, USA
 
  Funding: This research is support by Office of Naval Research Global, grant number N62909-10-1-7151
A 6-MeV L-band linac will be used to drive a planar, fixed gap, 2.5-cm period, hybrid undulator with parabolic pole faces. Consequently, this system is capable of generating wavelengths from 160 to 600 μm. In this paper we discuss the design of an optical resonator for this system. The resonator uses hole-coupled mirrors to allow for a straight electron beam line. The Rayleigh length, the position of the waist of the cold-cavity mode and the hole radii will be investigated to optimize the performance of the FEL.