FEL 2012, Nara, Japan

Status of the KAERI Table-top THz Free-Electron Laser Development

2012. 8. 29

THz Pump

X-ray Probe

WORLD CLASS INSTITUTE

ME

Y. U. Jeong¹, S. H. Park¹, K. Lee¹, K.-H. Jang¹, J. Mun^{1,2}, K. N. Kim^{1,3}, H. N. Kim¹, S. Park^{1,4}, S. Bae¹, Y.-H. Cha¹, B. H. Cha¹, S. Miginsky^{1,5}, B. Gudkov^{1,5}, and N. Vinokurov^{1,5}

¹Korea Atomic Energy Research Institute, ²Chungnam National University, ³Kongju National University, ⁴Kyungpook National University, 한국원자력연구원 ⁵Budker Institute of Nuclear Physics 220

Corea Atomic Energy Research Institu

WCI Outline 센터의 개요

KAERI

Total

Fund

nfrared

X-ray

JItraviolet

WCI Members 센터의 구성

WCI THz Pump

- RF Photogun-based **Accelerator**
- Laser Accelerator **Injection to Storage Ring**
- Variable-period Undulator

- Generation of Ultra-short T-ray & X-ray - Monitoring of Radioactive Gas from a Photocathode-based Accelerator - Study on THz Meta Materials and a 30 Terawatt Laser

- Development of new Bio **Technologies**

Construction of New Facilities

WCI THz Pump

Construction of New Facilities

THPD60 : K. Lee, et al., Design Status of Compact T-ray Pump and X-ray Probe System

WCI THz Pump

T-ray Pump & X-ray Probe

THPD60 : K. Lee, et al., Design Status of Compact T-ray Pump and X-ray Probe System

THz Pump

-rav Probe

Construction of New Facilities

Facility on Laser-based Radiation

WCI THz Pump

(-ray Probe

THPD58 : S. H. Park, et al., Preliminary Design of Compact Cyclic Accelerator using Laser-Plasma Electron Acceleration

KAERI Compact THz FEL

BEAMLINE

2 m

- **FEL Beam Specification**
 - Wavelength Range : 100-300 μm(100-1200 μm)

WCI

THz Pump

X-ray Probe

- Macropulse

MICROTRO

NDULATOR

- Pulsewidth : 4 µs
- Power: 10 W at the experimental stage
- Micropulse
 - Pulsewidth : 10-20 ps
 - Power : 100 W at the experimental stage
- Pulse Energy Fluctuation : <10% rms

WEPD63 : S. Bae, et al., Development of a THz-FEL Beam Delivery System for User Applications

Application Experiments with THz FEL

- In vivo THz-Bio interaction study with a laserscanning confocal microscope (P. Kim, KAIST)
- Nonlinear THz meta material study (B. Min, KAIST)
- THz study on strongly correlated electron systems (J. Lee, GIST)

Upgrading a THz Transport Line for 4 User Experimental Stages

A Table-top THz FEL

WCI

THz Pump

I. Microtron

II. Beam Optics

III. Undulators

IV. Waveguide Resonator

V. Conclusions

마이크로트론 가속기

E≠

WCI THz Pump

Microtron : Basic Theory

 λ_{RF}

 $k_{\rm RF}z - \omega t$

Eq. of motion $\frac{d}{dt} \left(\gamma \vec{\beta} m_0 c \right) = -e \left(\vec{E} + c \vec{\beta} \times \vec{B} \right)$ Circular motion $\frac{\gamma m_0 v^2}{r} = evB \quad \omega = \frac{v}{r} = \frac{eB}{\gamma m_0}$ Orbit period $T = \frac{2\pi}{\omega} = \frac{2\pi m_0}{eB} \gamma = \frac{2\pi E_e}{ec^2 B}$

Period at nth orbit & time difference btwn. orbits

$$T_n = \frac{2\pi m_0}{eB} \gamma_n \quad \Longrightarrow \quad \Delta T = T_{n+1} - T_n = \frac{2\pi m_0}{eB} \Delta \gamma_g$$

THz Pump

(-rav Probe

(MKS)

Energy at nth orbit $\gamma_n = \gamma_1 + (n-1)\Delta \gamma_g$

1st orbit, n = 1, $\gamma_1 = 1 + \gamma_{inj} + \Delta \gamma_g$ (with gun) $\gamma_1 = 1 + k \Delta \gamma_g$ (without gun)

At 2.8 GHz, I' = 2 and I = 1, B = 0.09 ~ 0.12 T & phase stable region ~ 90° to 122.5°

Simulation of Microtron : Magic3D

WCI

THz Pump

Microtron Main Magnet

WCI

TH_z Pump

RF Magnetron Modulator

THz Pump

RF Cavity & WG Module

WCI

THz Pump

 $E \neq mc$

WCI

THz Pump

II. Beam Optics 전자빔 광학계

Beam Optics of Transfer Line

λ_w 26 mm

한국원자력연구원 KAERI Korea Atomic Energy Research Institute

Compact PM Quadrupole

Direction of Magnetization

*Dimension : 156 x 156 x 20 mm

Design parameters

려

Permanent Magnets (Br)	NdFeB (1.2 T)
Iron Poles	Soft Iron
Effective centerline dia.	30mm
Retraction length of PM (d)	5.3 ~ 7.8 mm

WCI

THz Pump

Compact PM Quadrupole

THz Pump

III. Undulator

교번자장기

WCI THz Pump

X-ray Probe

E≠

TH_z Pump

THPD26 : J. Mun, et al., Design and Fabrication of a Variable-period Helical Undulator for a Table-top Free-electron Laser

WCI

THz Pump

Period, lw = 26 mm

THz Pump

Simulation parameters

	Parameters	Values
	E	6.5 MeV (γ=13.7)
	ΔE	0.4%
	ε _x	1.5 mm mrad
	ε _γ	0.35 mm mrad
e-beam	σ_{x}	0.8093 mm
	$\sigma_{x'}$	-4.517 mrad
	σ _y	0.3172 mm
	$\sigma_{y'}$	-1.603 mrad
	σz	3 mm
	B _w	10,320 Gauss
	N _w	25
Undulator	N _{adiabatic}	Input 2, output 2
	R _{wg}	2 mm

WCI

THz Pump

Electron beam dynamics – Simulation

Average position in x

Transverse beam size

WCI

THz Pump

Electron beam dynamics – Simulation

Parameters of Electron Beam at the Entrance of the Undulator $\sigma_{E} \quad \sigma_{z} \quad \epsilon_{x} \quad \epsilon_{y} \quad \sigma_{x} \quad \sigma_{x'} \quad \sigma_{y}$

WCI

THz Pump

X-ray Probe

σ.

• •	-	-	~	y y	A .	~	y y	, j
6.5 MeV	0.4%	1 cm	1.5 mm mrad	0.35 mm mrad	0.8093 mm	4.517 mrad	0.3172 mm	1.603 mrad

Evolution of Electron Beam through Undulator

Parameters of the V-P Helical Undulator					
В	λ_{w}	N _w	Entrance adiabatic #	Exit adiabatic #	R _{wg}
10.320 Gauss	2.3 cm	1 cm	2	0	2 mm

SE & Gain Function – Simulation

Spontaneous Emission Spectrum

FEL Gain Function

WCI

THz Pump

WCI

THz Pump

X-ray Probe

THPD26 : J. Mun, et al., Design and Fabrication of a Variable-period Helical Undulator for a Table-top Free-electron Laser

THz Pump

X-ray Probe

THPD26 : J. Mun, et al., Design and Fabrication of a Variable-period Helical Undulator for a Table-top Free-electron Laser

IV. Waveguide Resonator 도파관 공진기

WCI THz Puma

FEL Resonator

THz Pump

FEL Resonator (Outcoupling Mesh Mirror)

WCI

THz Pump

THz FEL Simulation (Peak Output Power vs. WG Losses) THZ Pump

THz FEL Simulation (Peak Output Power vs. WG Losses)

WCI

THz Pump

X-ray Probe

한국원자력연구원 KAERI Korea Atomic Energy Research Institute

Parameters for KAERI Table-top THz FEL

Electron Beam				
Energy (Peak	current)	6.5 MeV (0.5 A)		
Emittance		< 5 mm mrad		
Energy spread		~ 0.4%		
Undulator (H	lelical)			
Туре		Variable period/permanent M		
Period (Number of periods)		23 - 26 mm (30)		
Peak magnetic induction (K-value)		10 kG (2.15 – 2.43)		
Waveguide mode (Radius)		TE ₁₁ , HE ₁₁ (2 mm)		
THz beam				
Wavelength (frequency)		400–600 μm (0.5–0.75 THz)		
Average pow	er	~ 1 W		
Micropulse	Pulse duration	10 – 20 ps		
	Power	15– 30 kW		
	Repetition rate	2.8 GHz		
Macropulco	Pulse duration	4 μs		
wacropulse	Repetition rate	200 Hz		

WCI

THz Pump

X-ray Probe

한국원자력연구원 KaeRI Korea Atomic Energy Research Institute

Summary

- New design can reduce the size of THz FEL system to 2.3x1.6 m².
- New microtron can operate at higher B-field to reduce the size.
- Cooling capacity of RF cavity should be increased by 10%.
- Simulation result at B=1.1 kG is well agreed with the analytical calculation and the simulation is underway for B = 1.144 kG.
- Designed beam lattice can adjust the beta functions to match the initial requirement for variable-period helical undulator only varying ONE focusing quadrupole.
- Outcoupling mesh mirror may be fit for a compact THz FEL.
- The set-up for preliminary THz inspection test is underway.

www.QRC.or.kr

세계수준의연구센터(WCI)

반방사선연구센터 개소식

r Quantum-Beam-based Radiation Research

WCI

양자빈7

We are looking for Ambitious, Talent, Diligent, and Humanistic young friends, if any.

Opening ceremony, Sep. 23 2011

