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Microbunching instability in storage rings
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Microbunching instability in storage rings

Experimental observation : emission of CSR at THz frequencies
(bolometer signals : UVSOR-II, low-alpha & single bunch mode)
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Modeling

Vlasov-Fokker-Planck (1D) equation

∂f
∂θ

=p
∂f
∂q
− q

∂f
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⇒ rotation in phase space O(kHz)

+ 2ε
∂

∂p

(
pf +

∂f
∂p

)
⇒ damping + diffusion O(ms)

+IcEwf
∂f
∂p

⇒ wakefield

[Venturini and Warnock, Phys. Rev. Lett. 89, 224802 (2002)]

f (q, p, θ) : normalized electron distribution
q : longitudinal position (in units of r.m.s. bunch length at equilibrium)
p : relative energy (in units of relative energy spread at equilibrium)
θ : time (dimensionless, 2π = one synchrotron period)

Ewf (q) : electron moving on a
circular orbit in the midplane
between two parallel plates of
infinite conductivity.
[Murphy et al, Part. Acc. (1997)]
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Phase space versus time (numerical)

Numerical result : evolution of the electron distribution
(Vlasov-Fokker-Planck model + shielded CSR wakefield, UVSOR-II, low-alpha mode)

Below microbunching
instability threshold, I = 3mA

Around microbunching
instability threshold, I = 5mA

⇒ The structure has a characteristic wavenumber
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Principle of seeding : initial bunching using an external laser

sine modulated
laser pulse
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Motivation : previous results in conditions of slicing
[Byrd et al, Phys. Rev. Lett. 97, 074802 (2006)]
"Laser Seeding of the Storage-Ring Microbunching Instability for High-Power Coherent Terahertz
Radiation"

short laser pulse
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Principle of seeding : initial bunching using an external laser
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Setup for the production of modulated laser pulses

Chirped pulse beating
[Weling and Auston, JOSA B 13, 2783 (1996)]
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Global view of the experimental setup
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In the quest for sources of optical radiation in the terahertz
domain, promising candidates are nonlinear optical processes
occurring when an intense laser beam interacts with a material
medium1–5. Besides conventional media (such as crystals),
relativistic electrons also show striking nonlinear collective
behaviours, which can lead to powerful laser-induced coherent
emission6,7, revealing huge potentials of these devices as terahertz
sources8. However, up to now only broadband emissions were
reported, and experimental control of their radiation properties,
such as their spectra9,10, remained an important challenge.
Here, we demonstrate the possibility of mastering the coherent
emission experimentally by producing tunable narrowband
terahertz radiation. The interaction is made to occur between
an electron beam and laser pulses possessing a longitudinal
quasi-sinusoidal modulation, and the narrowband emission
occurs in a region of quasi-uniform magnetic field. The process
therefore strongly diVers from classical synchrotron radiation
experiments, where narrowband emission occurs inside a
periodic magnetic field.

Terahertz generation in classical media has a long history1. The
fundamental processes involved, in particular optical rectification,
current transients in semiconductors and diVerence frequency
mixing, have been extensively studied both theoretically and
experimentally, some of them since the 1960s3. Now, nanojoule to
microjoule energies can be obtained in broadband sources1,4,5, and
narrowband emission on the basis of laser pulse-shaping11–15 is also
a well studied technique. Besides, terahertz emission using laser–
electron interaction (laser-induced charge-density modulation) is
a very new field. First results on broadband terahertz emissions
using short-pulse laser slicing in an undulator have been reported
during the past two years6,7,10,16,17. Shortly before, Carr et al.8

addressed the closey related question of power attainable by
charge densities showing picosecond-scale modulations (very
short electron bunches in this case). This research field needs
now experimental investigations at the very fundamental level,
concerning in particular the actual feasibility of interaction
processes and their potentials, as well as their fundamental limits.

THz radiation
analysis
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bunch
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shaper
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analysis

Figure 1 Principle of the experiment. A laser pulse (at 800 nm) is shaped with a
longitudinally sinusoidal modulation, with a period in the picosecond range. The
pulse interacts with the electron bunch of an accelerator (the UVSOR-II storage ring
here), in a region of periodic magnetic field (an undulator tuned at the laser
wavelength). The electron bunch is then deviated by a dipole magnet, and terahertz
emission occurs with a process similar to classical laser-induced slicing coherent
synchrotron radiation6,7,10,16,17.

In laser–electron beam interaction, the technical arrangement
presents similarities with terahertz emission experiments in
classical materials. However, the physics strongly diVers and
involves complex evolutions of the electrons in phase space, specific
to the so-called laser-induced slicing6,7,10,16,17.

The principle of our experiment is illustrated in Fig. 1.
A laser pulse with a quasi-sinusoidal envelope interacts with
the electron bunch of a storage ring, in a region of periodic
magnetic field (an undulator tuned at the laser wavelength). In
this first step (Fig. 2a,b), the electrons mainly experience a fast
energy modulation at the optical scale (not resolved in Fig. 2),

390 nature physics VOL 4 MAY 2008 www.nature.com/naturephysics

© 2008 Nature Publishing Group 

UVSOR-II, normal alpha and single bunch mode.
Energy 600 Mev, relative energy spread ≈ 3.4× 10−4 and rms bunch
lenght ≈ 3 cm.
Beam current below the microbunching instability threshold.
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Tests without microbunching instability : effective bunching at mm scale

Experiments at UVSOR :
[Evain et al, Phys. Rev. STAB 13, 090703 (2010)]

[Bielawski et al, Nature Phys. 4, 390 (2008)]

Typical emission spectra induced
by the shaped laser pulses.

Tunability of the peak terahertz
emission frequency.

⇒ Observation of narrowband THz emission in a bending magnet
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Seeding results below and above microbunching instability
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Zoom of bolometer signal versus excitation wavenumber
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Zoom of bolometer signal versus excitation wavenumber
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Numerical result : CSR versus time

For a beam current I = 3.5 mA :

Beamline cutoff : 0 cm-1

Bolometer time response : 2 µs
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Typical simulated bolometer signal for an excitation at 1.5 cm-1

2e+10

4e+10

6e+10

8e+10

1e+11

1.2e+11

1.4e+11

0 3.14 6.28

T
H
z
si
gn
al
(a
.u
.)

Time (dimensionless)

withoutwakefield
with shielded CSR wakefieldhalf synchrotron period

Beamline cutoff : 0 cm-1

Bolometer time response : 2 µs

half synchrotron period

0

200000

400000

600000

800000

1e+06

0 3.14 6.28

T
H
z
si
gn
al
(a
.u
.)

Time (dimensionless)

withoutwakefield
with shielded CSR wakefield

Beamline cutoff : 3.5 cm-1

Bolometer time response : 2 µs



Storage-ring microbunching instability Seeding setup (at mm wavelength using an external laser) Results of seeding at UVSOR-II

Typical simulated bolometer signal for an excitation at 1.5 cm-1
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Longitudinal phase space for an excitation at 1.5 cm-1

without wakefield
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Resonance curve

Maximum value of the delayed
response
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resonance curve at the characteristic wavenumbers of the system.
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Conclusion

Experimental results

Seeding of the microbunching instability with modulated laser pulses.

Resonance curve at the characteristic wavenumber of the microbunching
instability.

Numerical analysis

Some agreements with a simple 1D model (VFP + shielded CSR
wakefield), e.g., the resonance wavenumber, the response at half
synchrotron period

Differences in the amplitude of the responses, e.g., ratio
immediate/delayed response

Next steps
Improvement of wakefield models. [Agoh and Yokoya, Phys. Rev. STAB 7, 054403
(2004)] [Stupakov and Kotelnikov, Phys. Rev. STAB 12, 104401 (2009)]

Taking into account the transverse aspect and other experimental aspects,
e.g., the beamline response.
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—————–

BACKUP

—————–
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Experimental spectra
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Detected wavenumber at half synchrotron period is 2 times larger than
initial excitation.
Do we detect the harmonic of the modulation ? ?
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Temporal spectra (numerical) for an excitation at 1.5 cm-1
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