X-ray Optics-Free FEL Oscillator X-OFFELO*

Vladimir N. Litvinenko, Johan Bengtsson, Yue Hao, Yichao Jing, Dmitry Kayran, Dejan Trbojevic Brookhaven National Laboratory

Department of Physics and Astronomy, Stony Brook University

* 10 years old idea: X-OFFELO was introduced in July 2002 at ICFA workshop in Chia Laguna, Sardinia and later at FEL 2005 as FEL prize talk.

V.N. Litvinenko, FEL 2012, Nara, Japan

Dedication

to abused (*mechanically, thermally, verbally... and also by radiation*) stressed, damages, over-exploited, pushed to the limits, sworn-on

Pushing the FEL oscillator power will require - at some momentremoving the optics and relying on the e-beam

V.N. Litvinenko, FEL 2012, Nara, Japan

Content

- What is OFFELO?
- Main challenges
- Problems we addressed
- Simulations & results
- Conclusions/Plans

OFFELO

- 1. High gain amplifier/ main e-beam (from ERL or CW linac)
- 2. Feed-back is provided by a low-current e-beam
- 3. Feed-back e-beam picks the energy modulation from the FEL laser beam in modulator, preserves the correlations at 1/10th of the FEL wavelength in the long transport line, radiates coherently in the radiator.
- 4. The later serves as the input into the high gain FEL & compeates wit the spontaneous radiation

Modulator/Radiator: Using very high harmonics or sub-mm

- Low current, long bunches Collective effects
- Fundamental effects of quantum nature of synchrotron radiation $\sigma_{ct}[m] \cong 1.61 \cdot 10^{-5} \frac{E[GeV]^{5/2}}{O[m]} \sqrt{\langle R_{56}^2(s|C) \rangle_{mag}}[m] \quad \clubsuit \quad E < 1 GeV$
- Canceling time-of-flight dependence on transverse motion

•

FEL

NATIONAL LABOR

- Highly isochronous lattice $\delta S_{turn} = c \, \delta (\tau_{exit} - \tau_{input}) < \lambda_{FEL}$

Problems we addressed

- We developed a concept of high-order isochronous lattice comprised of a multiple cells with the total integer tunes in both directions
- We created 3km long lattice based on this concept, which preserves correlations at sub-A scale for 1.5 GeV e-beam, including quantum effects of synchrotron radiation
- We considered the CSR wake-fields for the e-beam and found a solution for compensating the effect
- We included the high order map and random effects resulting from quantum nature of synchrotron radiation into the self-consistent simulation of this FEL oscillator
- We made first attempt of simulating the generation e-beam with required quality for the feed-back....

Lattice

- Concept*
 - use a periodic isochronous lattice** with N cell and total integer tunes in both directions
 - cell tune advances avoiding low order resonances $N\Delta v_x = K; N\Delta v_y = M$
 - such lattice is a natural (Brown) achromat and compensating chromaticities automatically kills second order terms in time of flight dependence on x,x',y,y' $n\Delta v_x + m\Delta v_y \neq l$; n, m = 1, 2, 3, 4...
 - use additional sectupole (multipole) families to reduce higher order terms (Tracy 3)
 - Example is below: N=11×19=209, $\Delta v_x = 18/19$; $\Delta v_y = 5/11$ lowest order resonance 30

¹/₂ BeamLine; S1, QD2,O,B2H,B2H,O,QF2,S2,QF2,O,B2H,B2H,O,QD2,S3, QD2,O,B2H,B2H,OFW,QF3,QF3,S4,O1F,QD3,QD3,S5,O2F,B2H + bilateral part

Radius of curvature= 302.7 m O, OFW, O1F, O2F are drifts with lengths: O: L = 0.075; OFW: L = 0.3; O1F: L = 0.35; O2F: L = 0.221; B2H is the dipole: B2H: L=0.65, ANGLE=0.002147363399583 The guadrupole settings are: QF2: L = 0.19, K2 = 1.294; QD2: L = 0.175, K2= -1.296; QF3: L = 0.28, K2 = 1.777; QD3: L = 0.2, K2 = -1.348. S1: K3L=-87.6, K4L=-2.06E5; K5L=-5.16E9; S2: K3L= 267.9, K4L= 3.24E5, K5L=-1.90E9; S3: K3L=-223.2, K4L= 2.43E5. K5L=-5.33E9; S4: K3L= 61.9, K4L=-8.35E4, K5L=-3.40 E6; S5: K3L= 23.3, K4L= 2.48E5, K5L=-4.85E8. 1.000000000, 0.000000000 nu: m 11 - 1: 1.534e-13, -9.093e-14 -9.059e-13, 2.287e-11 m 12: -1.155e-03, -2.001e-03 ksi: R 56: 2.476e-19; R 566: -1.184e-11 R 5666: 3.445e-12; R 56666: 7.312e-13

Cell	Ø,	⊗,	⊗,	2⊗ v.	3⊗,	28	≪2⊗	$\bigotimes_{x}^{x+2\otimes}$	4⊗,	4⊗,	$2 \otimes _{x}^{x}$ - $2 \otimes _{x}$	2⊗¦ _x +2⊗¦	5⊗∫.	⊗i _x - 4⊗i.	⊗ +4⊗	$3 \otimes x^{-}$	3⊗i _x +2⊗i
1	0.947	0.455	0.95	1.89	2.84	0.91	0.04	1.86	3.79	1.82	0.99	2.80	4.74	-0.87	2.77	1.93	3.75

V.N. Litvinenko, FEL 2012, Nara, Japan

**D.Trbojevic et al, AIP CONFERENCE PROCEEDINGS, V. 530, (2000) p. 333

Beam transport

Exercise $\Delta v_x = 18/19; \Delta v_y = 5/11$

- N= 209; path length 3221.323 m
- lowest regular resonance order 41 $19\Delta v_x + 22\Delta v_y = 28$
- Test beam parameters:
 - relative RMS energy spread 10⁻⁴;
 - Normalized emittance, x & y 0.02 μ m
- Fifth order map
- Synchrotron radiation at 1.5 GeV is OK $\langle R_{56}^2(s|C) \rangle = 8.06 \cdot 10^{-8}$.
- 50% of the modulation at 1 Å is preserved
- CSR wake manageable

I	1 2 3 4 5 6
	xx'yy'δct
1 1.7487905669206507e-19	100000
1 2.06/382028925/0546-20	0 1 0 0 0 0
1 2.4701200203707074e-19	
2 -7 5525693400348191e-13	200000
2 9 4684272921669303e-23	1 1 0 0 0 0
2 -7.5497742554840793e-13	020000
2 1.0452067194273214e-12	002000
2 2.4658675101818518e-21	001100
2 1.0459284822532135e-12	000200
2 -2.7175462537259362e-12	100010
2 -4.1906530772670468e-22	010010
2 4.0933549122163592e-12	000020
3 4.2627661981805402e-12	300000
3 -4.79203008590537008-24	210000
3 4.2709020090000007/E-12 3 5 211/1677818663300c 21	120000
3 3 7727932849036214e-12	102000
3 -2.1284786277441330e-22	0 1 2 0 0 0
3 -2.0111682438652990e-22	101100
3 -4.2521617243397188e-13	0 1 1 1 0 0
3 4.1028146230153669e-12	100200
3 -4.3815196522505170e-22	010200
3 5.1338910746389662e-12	200010
3 -1.4184367553033096e-23	110010
3 -2.4921081665149797e-12	020010
3 -7.809/23/25834/493e-12	002010
3 - 2.340001/2095403120-22	
3-1.13219102439092110-12	100210
3 -6 8389553483116789-18	0 1 0 0 2 0
3 -4.0489736363830835e-16	0 0 0 0 3 0
4 -6.0925615934169556e-13	400000
4 -1.3634583698549667e-12	220000

1 2.0673820289257054e-20 0 1 0 0 0 0 1 2.4761280265767074e-19 0 0 0 0 1 0 0 -7.5525693400348191e-13 2 9.4684272921669303e-23 1 1 0 0 0 0 0 2 -7.5497742554840793e-13 0 2 0 0 0 0 0 1.0452067194273214e-12 0 0 2 2,4658675101818518e-21 0 0 1 1 1,0459284822532135e-12 0 0 0 -2.7175462537259362e-12 1 0 0 0 1 0 0 2 -4.1906530772670468e-22 0 1 0 0 1 0 0 2 4.0933549122163592e-12 0 0 0 0 2 0 0 4.2627661981805402e-12 3 0 0 0 0 0 0 3 -4.7920366859653766e-24 2 1 0 0 0 0 0 3 4.2769026098856557e-12 1 2 0 0 0 0 0 2100000 5.2144677818663399e-24 0 3 0 0 0 0 3 3.7727932849036214e-12 1 0 2 0 0 0 0 3 -2.1284786277441330e-22 0 1 2 0 0 0 -2.0111682438652990e-22 3 -4.2521617243397188e-13 0 1 1 1 0 0 0 3 4.1028146230153669e-12 1 0 0 2 0 0 0 -4.3815196522505170e-22 0 1 0 2 0 0 0 3 5.1338910746389662e-12 2 0 0 0 1 0 0 3 -1.4184367553033096e-23 1 1 0 0 1 0 0 3 -2,4921081665149797e-12 0 2 0 0 1 3 -7.8097237258347493e-12 0 0 2 0 1 0 0 3 -2.3468817289540312e-22 0 0 1 1 1 0 0 -7.1327970245969211e-12 0 0 0 2 3 -6.8345476626196068e-12 1 0 0 0 2 0 0 3 -6.8389553483116789e-18 0 1 0 0 2 0 0 3-4.0489736363830835e-16 0 0 0 0 3 0 0 4 -6.0925615934169556e-13 4 0 0 0 0 0 0 4 -1.3634583698549667e-12 2 2 0 0 0 0 4 -8.0660563991742595e-25 1 3 0 0 0 0 0 4 -6.6656732473884208e-13 0 4 0 0 0 0 4 -3,9521245585897409e-12 2 0 2 0 0 0 0 4 3.0116618763046885e-23 1 1 2 0 0 0 0 4 -3.9758379601763162e-12 0 2 2 0 0 0 0 4 1.5806073430424698e-11 0 0 4 0 0 0 0 4 4.3261915199957297e-23 2 0 1 1 0 0 0 4 -8.6747266393727828e-13 1 1 1 1 0 0 0 4 8.8039577067425866e-23 0 2 1 1 0 0 0 6.9755405489696060e-23 0 0 3 1 0 0 0 4 -3.8398177910194354e-12 2 0 0 2 0 0 0 4 2.6881776609868858e-23 1 1 0 2 0 0 0 4-3.8467700250604809e-12 0 2 0 2 0 0 0 4 -1.0046217760097237e-11 0 0 2 2 0 0 0 4 8,9010069560564544e-23 0 0 1 3 0 0 0 4 -4.5164910084921710e-12 1 2 0 0 4 4.2884372908343760e-17 0 3 0 0 1 0 0 4 -1.3533100721407238e-11 1 0 2 0 1 0 0 4 3.9568285731201258e-17 0 1 2 0 4 4,9108701773076926e-23 1 0 1 1 1 0 0 4 2,3635502919118241e-12 0 1 1 1 1 0 0 -1,4230617448863633e-11 1 0 0 2 1 0 0 4 3.9595583042328929e-17 0 1 0 2 1 0 0 4 -9.5052747020594219e-12 2 0 0 0 2 0 0 1 7.7129958678606637e-17 4 -3.5328230951830668e-12 0 2 0 0 2 0 0 4 -1.9114924005443654e-12 0 0 2 0 2 0 0 4 2.8285490015434341e-18 0 0 4 -3.8167550015267932e-12 0 0 0 2 2 0 0 4 -8.7122594198860168e-12 1 0 0 0 3 0 0 4 -2.2933010987969747e-17 0 1 0 0 3 0 0 4 -3.0415524785123360e-12 0 0 0 0 4 0 0 5 -1.2410001011112450e-16 2 1 2 0 0 0 0 5-3.3739999492765848e-09 1 2 5 -1.2405409614606939e-16 0 3 2 0 0 0 0 5 2.8620517107562123e-09 1 0 4 0 0 0 0 -5.7236422467608124e-17 0 1 4 0 0 0 0 5 -7.2686686085329473e-23 1 0 3 1 0 0 0 5 -8.4949809637270792e-12 0 1 3 1 0 0 0 5-4.7780288760105111e-10 4 0 0 0 1 0 0 5 -2.4181192473119710e-16 3 1 0 0 1 0 0 5 -5.6445565692832728e-10 2 2 0 0 1 0 0 -2.4261502529089122e-16 1 3 0 0 5-8.6888013205581867e-11 0 4 0 0 1 0 0 5 -9.2222599378940371e-09 2 0 2 0 1 0 0 -2.2345029545597995e-16 1 1 2 0 1 0 0 5 -3.1487558350231196e-09 0 2 2 0 1 0 0 5 2,5703850210375351e-09 0 0 4 0 1 0 0 1,5240352078710214e-17 2 0 1 1 1 0 0 5 4.0330697056882054e-12 1 1 1 1 1 0 0 5 5.9647682190174430e-18 0 2 1 1 1 0 0 -1.1505196843660681e-15 0 0 3 5 5.1539973882010306e-09 0 0 2 2 1 0 0 5 -8.2119624756291215e-10 3 0 0 0 2 0 0 5-1,6712444366910548e-16 2 1 0 0 5 -4.6923109126702629e-10 1 2 0 0 2 0 0 4.8882417168131931e-17 0 3 0 0 2 0 0 -8.5010028381148899e-09 5-4.7312732232378398e-18 0 1 2 0 2 0 0 2,6810837925306211e-17 1 0 1 1 2 0 0 4.2053494098612977e-13 0 1 1 -8.5100541366479728e-09 1 0 0 2 2 0 0 -3.2859174137644429e-18 0 1 0 2 2 0 0 -6.8269966923456770e-10 2 0 0 0 3 0 0 5 8,9842723976985677e-17 1 1 0 0 3 0 0 5 -1.1921557671949587e-10 0 2 0 0 3 0 0 5-2.6206209332726543e-09 0 0 2 5 -2.4147117069721751e-17 0 0 1 1 3 0 0 5 -2.6224127716567658e-09 0 0 0 2 3 0 0 5-2.6847505658376925e-10 1 0 0 0 4 0 0 5 -4.1145305690787728e-17 0 1 0 0 4 0 0 5 -3 7988578983552299e-11 0 0 0 0 5 0 0

I 1 2 3 4 5 6 7 1 1.7487905669206507e-19 1 0 0 0 0 0 0

V.N. Litvinenko, FEL 2012, Nara, Japan

We also explored 300 m path length.

NATIONAL LABORATORY

Center for Accelerator Science and Education

Undulator/Wiggler for Modulator/Radiator

- It is very desirable to use low energy < 1 GeV for feed-back beam to avoid the most fundamental limitation by quantum nature of synchrotron radiation
 - Unless we use accelerator/decelerator scheme (later slide)...
- This results in two potential solutions:
 - Using very high harmonic, N ~ 25; $JJ_N \sim 10^{-3} 10^{-4}$
 - Using an TEM wiggler with Kw $\sim 10^{-1}$

NATIONAL LABORATORY

High Harmonic FEL driven TEM undulator Efb ~ 250 MeV, FEL pump- at 0.1 mm $N_{\mu}K^2 \sim 0.3 \cdot \hat{p}[GW]$ Energy ~ 1.5 GeV $\lambda_p = 4\gamma^2 \lambda_{FEL}; K_w^2 << 1$ Wiggler period ~ 3 cm Rep-rate ~ 1 MHz Kw ~ 3 Pulse length ~ 10 psec ·λ, mm Intra-cavity: $\lambda_{FEL} = \frac{\lambda_w}{2\gamma^2 (2N-1)} \left(1 + \frac{K_w^2}{2}\right)$ 1.2 Peak power ~ 1 GW Energy in pulse ~ 10 mJ 0.8 0.6 Average power ~10 kW For 1Å FEL it yields 0.4 FEL N~25-50 0.2 ~ 10³ Q 0 L 0 JJ ~ 10⁻³ 0.2 0.4 0.6 0.8 Average power ~ 10 W E, GeV Well within N=1; **JJ=0.996**: achievable Kw ~ 0.17

parameters

Preliminary Simulation Results

Parameter	HG FEL	Feed- back I	Feed- back II	Units	Peak power evolution in OFFELO
Wavelength	1	1	1	Å	7
Energy	10	0.75	1.5	GeV	
Wiggler period	3	0.0426	0.01	cm	
a _w	1.24	0.1	2.95		<u>5</u> -
N w	1600	28	28		
Wiggler length	48	0.01	1	m	Output
Peak current	3000	50	400		3-
Norm emittance	0.5	0.02	0.02	µm rad	2-
RMS energy spread	5 10 ⁻⁵ 500	10 ⁻⁵ 7.5	10 ⁻⁵ 15	KeV	10 10 20 30 40 50 60 Iteration #
First pass RMS bo	s SASE	spectru 10.2%		20-fold the spec passes Using LCl should br ppm level System is & improve	narrowing of trum after 60 S II technique ing it to 10 s not optimized ements are
0.990 0.995 Radii	1.000 1.000 ation wavelength (m	1.005	 1.010 1e-10	expected	0.990 0.995 1.000 1.005 1.010 Radiation wavelength (m) 1e-10

Alternative Feed-back scheme

Conclusions

- FEL oscillator without optics seems to be feasible
 - No show-stoppers had been found
 - sub-mm FEL works the best for modulator and the radiator
 - An arc lattice can be designed to meet the challenge
- Using intra-cavity power of sub-mm FEL for modulator and the radiator works best for the presented scheme

Feed-Back e-beam

- Normalized slice emittance $\varepsilon_n \sim 0.02 \ \mu \, m$ rad is a serious challenge and we are considering lattices capable of tolerating $\varepsilon_n \sim 0.2 \ \mu \, m$ with 250 MeV e-beam
- Our test-studies of 300-m feed-back beam-line showed very high tolerance to the larger emittance and energy spread
- Possible additional (and expensive) technical technical improvement the Accelerator/Decelerator scheme the feed-back beam

Laundry List

- Sensitivity to the errors, Ripples in the power supplies
- Locking-in the feed-back using long wavelength laser system
- Space charge effects in the feed-back loop
- Intra-beam scattering
- Wake-fields
- Optimization of the system
-
- Starting R&D with sun- μ m before going to Å scale is worth considering
- Technical details such as electron-beam mirror, can be studied using existing ATFs

Back-up slides

Preserving the phase correlations

$$H = -\frac{(1+K_o(s))}{c} \left\{ p_o^2 c^2 + 2E_o \delta E + \delta E^2 + P_x^2 + P_y^2 \right\} - \frac{e}{c} A_s + \frac{\delta E}{v_o} \qquad \frac{d\tau}{ds} = -\frac{\partial H}{\partial(\delta E)}; \quad \frac{dt_o}{ds} = \frac{1}{v_o}$$

$$\{x, P_x\}, \{y, P_y\}, \{\tau = (t_o(s) - t), \delta E\} \qquad \frac{\delta S_{turn}}{turn} = C \delta \left(\tau_{exit} - \tau_{input}\right) < \lambda_{FEL}$$

$$\left|\delta S_{turn}\right| \leq \lambda_{FEL}; \qquad \delta S_{turn} = \delta S_{turn} \left(\delta E\right) + \delta S_{turn} \left(\varepsilon_{x,y}\right) + \delta S_{HO} \left(\delta E, \varepsilon\right) + \delta S_{random};$$

$$Example: L = 100m; \quad \lambda = 10^{-10}m; \quad \varepsilon = 10^{-10}m \cdot rad; \quad \sigma_E = 0.01\%$$
1. Energy spread and compaction factors
$$\delta S_{turn} \left(\delta E\right) = L \cdot \left\{R_{s6} \left(\frac{\delta E}{E}\right) + R_{s66} \left(\frac{\delta E}{E}\right)^2 + R_{s666} \left(\frac{\delta E}{E}\right)^3 + \dots\right\};$$

$$\Rightarrow |\alpha_{c}| = |R_{56}(0,L)| < 10^{-8}; ||R_{566}(0,L)|| < 10^{-4}; ||R_{5666}(0,L)|| < 1..$$

 $\langle E \rangle$

 $\setminus E$)

-> second order isochronous system

V.N. Litvinenko, FLS 2010, SLAC, March 4, 2010

2. Emittance effects
Linear term: comes from symplectic conditions

$$M^{T}SM = S;$$

$$\int_{0}^{\sigma} \int_{0}^{\sigma} \int_{0}^{\sigma}$$

It is not a problem to make the turn achromatic with $\eta=0$ and $\eta'=0$ It is a bit more complicated to make the condition energy independent. An elegant solution - sextupoles combined with quadrupoles with $K_2=K_1/2\eta$:

$$x'' = -\frac{K_{1}x + K_{2} \cdot \left(\left(x + \eta \cdot \delta\right)^{2} - y^{2}\right)}{1 + \delta} = -K_{1} \cdot x + O(x^{2}, y^{2})$$
$$y'' = \frac{K_{1}y + 2K_{2}y \cdot (\eta \cdot \delta + x)}{1 + \delta} = K_{1} \cdot y + O(xy)$$

$$\int_{0}^{L} O(x^2, y^2, xy, \eta^2) \Longrightarrow 0$$

Solution is a second order achromat (N cell with phase advance $2\pi M$, M/N is not integer, etc.) with second order geometrical aberration cancellation

2. Emittance effects

Quadratic term

$$\delta S_2 \propto \int_o^L \frac{x'^2 + {y'}^2}{2} ds$$
$$\kappa = a_x \sqrt{\beta_x(s)} \cos(\psi_x(s) + \varphi_x) + \eta(s) \frac{\delta E}{E_o}; \quad y = a_y \sqrt{\beta_y(s)} \cos(\psi_y(s) + \varphi_y).$$

Sextupoles* in the arcs are required to compensate for quadratic effect sextupole kick + symplectic conditions give us right away:

Sextupoles located in dispersion area give a kick ~ x²-y² which affect the length of trajectory. Two sextupoles placed 90° apart the phase of vertical betatron oscillations are sufficient to compensate for quadratic term with arbitrary phase of the oscillation

Dipole

$$\Delta x'_{sext} = K_2 l \cdot \left(x^2 - y^2\right) \implies \delta S = -\eta(s) \cdot \Delta x'_{sext} = -\eta(s) K_2 l \cdot \left(x^2 - y^2\right)$$
$$\frac{1}{2} \int_{o}^{L} \left(x'^2 + y'^2\right) ds - \sum_{n} \eta(s_n) \left(K_2 l\right)_n \cdot \left(x^2(s_n) - y^2(s_n)\right) ds \Longrightarrow 0$$

Four sextupoles located in the arcs where dispersion are sufficient to satisfy the cancellation of the quadratic term in the non-isochronism caused by the emittances. Fortunately, the second order achromat compensates the chromaticity and the quadratic term simultaneously. In short it is the consequence of Hamiltonian term:

$$h \propto -g(s) \cdot \delta \cdot \left(\frac{x^2 - y^2}{2}\right) \Longrightarrow C_x \cdot \delta \cdot \frac{a_x^2}{2} + C_y \cdot \delta \cdot \frac{a_y^2}{2}$$

Sextupole

•This scheme is similar to that proposed by Zolotarev and Zholetz. (PRE 71, 1993, p. 4146) for optical cooling beam-line and tested using COSY INFINITY. It is also implemented for the ring FEL: A.N. Matveenko et al. / Proceedings 2004 FEL Conference, 629-632

Synchrotron Radiation $\frac{\lambda_{FEL} \sim 1A}{\lambda_{FEL}}$

- Energy of the radiated quanta $\mathcal{E}_c[keV] = 0.665 \cdot B[T] \cdot E_e^2[GeV]$
- Number of radiated quanta per turn $N_c \cong 2\pi\alpha\gamma \cong 89.7 \cdot E[GeV]$
- Radiation is random -> the path time will vary
- The lattice should be designed to minimize the random effects

$$\left(\delta S_{rand}\right)^2 \approx N_c \left(\frac{\mathcal{E}_c}{E_e}\right)^2 \left\langle R^2_{56}(s,L) \right\rangle$$

 $R_{56}(s,L)$ is the longtudinal dispersion from azimuth s to L

$$\Rightarrow \sqrt{\langle R^2_{56}(s,L)\rangle} < \sqrt{\frac{2}{N_c}} \frac{E_e}{\varepsilon_c} \lambda$$

It looks as the toughest requirement for the scheme to be feasible

$$\sqrt{\langle R^{2}_{56}(s,L)\rangle} < 2.25 \cdot 10^{-5} m \cdot E_{e}^{-3/2} [GeV] \cdot B^{-1}[T]$$

V.N. Litvinenko, FLS 2010, SLAC, March 4, 2010

V.N. Litvinenko, FLS 2010, SLAC, March 4, 2010

FEL simulation results for OFFELO at BNL R&D ERL GENISIS simulations

V.N. Litvinenko, FLS 2010, SLAC, March 4, 2010