

System Design for Self-Seeding the LCLS at Soft X-ray Energies

Yiping Feng

SXRSS Collaboration Team

- LCLS, SLAC National Accelerator Laboratory
 - J. Amann, D. Cocco, Y. Feng, C. Field, J. Hastings, P. Heimann, Z. Huang, H. Loos, J. Welch, J. Wu
- ALS, Berkeley Lawrence National Laboratory
 - K. Chow, P. Emma, N. Rodes, R. Schoenlein

SL AC

Outline

- Spectral fluctuations of LCLS-I SASE FEL
- Scientific drivers for seeded FEL
- System design of soft X-ray self-seeding at LCLS-I
 - Performance specifications
 - Hard X-ray self seeding at LCLS
 - X-ray optics
 - Electron optics
 - Alignment and diagnostic
- Simulations
- Mechanical design updates
- Summary

SLA0

Linac Coherent Light Source

- LCLS-I is SASE based w/ 33 undulators
 - 500 eV to 10 keV, 5 50 fs, 5 mJ/pulse, lased in Apr. 2009*

FEL2012, Nara, Japan, August 28 2012

SASE FEL Characteristics

• SASE FEL starts from noise and is considered to be

	Pulse duration	Coherence time	Spike width	Spectral range	# of spikes
Time domain	50 fs	200 as			250
Spectral domain			100 meV	25 eV	250

FEL2012, Nara, Japan, August 28 2012

*for example, E. L. Saldin *et.al*. Opt. Comm. **148**, 383 (1998)

Single-shot Hard X-ray Spectrum

"Every pulse is a new experiment!"

APPLIED PHYSICS LETTERS 101, 034103 (2012)

A single-shot transmissive spectrometer for hard x-ray free electron lasers

Diling Zhu,^{a)} Marco Cammarata,^{b)} Jan M. Feldkamp, David M. Fritz, Jerome B. Hastings, Sooheyong Lee,^{c)} Henrik T. Lemke, Aymeric Robert, James L. Turner, and Yiping Feng^{a)} *Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA*

SASE Stochastic behavior

measured by high resolution spectrometer (100 meV @ 8.3 keV)

Intensity distribution in spectral domain

$$p(W) = \frac{M^M}{\Gamma(M)} \left(\frac{W}{\langle W \rangle}\right)^{M-1} \frac{1}{\langle W \rangle} \exp\left(-M\frac{W}{\langle W \rangle}\right)$$

A. Lutman, Z. Huang, J. Krzywinski, J. Wu, and Y. Feng

*E. L. Saldin et.al. Opt. Comm. 148, 383 (1998)

Experimental Challenges when high resolution monochromator is required

SLAC

X-ray Photon Correlation Spectroscopy w/ FEL and split-and-delay optics

90° diffraction angle gives fixed energy: 8.4 keV for Si (511), 7.9 keV for Si (422)

Courtesy of A. Robert and G. Gruebel

Scientific Drivers for Seeding

LCLS-II NEW INSTRUMENTS WORKSHOPS REPORT

SLAC-R-993

Courtesy of P. Heimann & J. Hastings

Hard and soft x-ray self-seeding has the potential to dramatically narrow the bandwidth and enhance the peak power and temporal coherence.

Soft X-ray Science w/ Seeded FEL

- AMO science case-I
 - Understanding electron-nuclear interaction in molecules by non-BOA* probing in the soft x-ray

Effective nuclear path

Simplified potential energy scheme for the nucleobase thymine Excerpt from LCLS-II workshop

Requirements for LCLS-II

- Small bandwidth (5000 resolution) for absorption and emission studies, ideally with SXRSS

- Timing to VIS-UV laser on the order of 10 to 100 fs, either by active locking or by single shot timing tool

- X-ray fluorescence detectors, electron and ion time of flight spectrometers

*Born-Oppenheimer approximation

FEL2012, Nara, Japan, August 28 2012

SL AC

Soft X-ray Science w/ Seeded FEL

- AMO science case-II
 - Understanding electron-electron interaction in molecules by studying Raman transitions

Requirements for LCLS-II

- Beams at different angles and different colors, time delays between multiple pulses

- Self seeding for tunable colors or shortest near Fourier limited pulses
- Intensities in the range 10¹⁷-10¹⁸ W/cm²
- X-ray fluorescence detectors

Excerpt from LCLS-II workshop

Soft X-ray Science w/ Seeded FEL

- AMO science case-III
 - Understanding high intensity physics beyond the perturbation approximation

Requirements for LCLS-II

- Focusing system with minimal loss and intensities on the order of 10^{19} W/cm²

- Time delay for x-ray pump-probe, 1st and 3rd harmonic

- Synchronized THz source
- Electron and ion detectors
- Scattering detector

TW capability (implicitly requiring seeding)

SASE FEL Self-Seeding^{1,2}

- First undulator generates SASE
- X-ray monochromator filters SASE and generates seed
- Chicane delays electrons and washes out SASE micro-bunching
- Second undulator amplifies seed to saturation

- Long x-ray path delay (~10 ps) requires large chicane that take space and may degrade beam quality
- Reduce chicane size by using two bunches³ or single-crystal wake monochromator⁴
 1. J. Feldhaus et al., NIMA, 1997.
 - 2. E. Saldin et al., NIMA, 2001.
 - 3. Y. Ding, Z. Huang, R. Ruth, PRSTAB, 2010.
 - 4. G. Geloni, G. Kocharyan, E. Saldin, DESY 10-133, 2010. 14

SLA0

FEL2012, Nara, Japan, August 28 2012

Hard X-ray Self-Seeding @ LCLS-I

PUBLISHED ONLINE: XX XX 2012 | DOI: 10.1038/NPHOTON.2012.180

Demonstration of self-seeding in a hard-X-ray free-electron laser

J. Amann¹, W. Berg², V. Blank³, F.-J. Decker¹, Y. Ding¹, P. Emma^{4*}, Y. Feng¹, J. Frisch¹, D. Fritz¹, J. Hastings¹, Z. Huang¹, J. Krzywinski¹, R. Lindberg², H. Loos¹, A. Lutman¹, H.-D. Nuhn¹, D. Ratner¹, J. Rzepiela¹, D. Shu², Yu. Shvyd'ko², S. Spampinati¹, S. Stoupin², S. Terentyev³, E. Trakhtenberg², D. Walz¹, J. Welch¹, J. Wu¹, A. Zholents² and D. Zhu¹

Proposed by Geloni, Kocharyan, Saldin, DESY 10-133, 2010

Unequivocal signature of seeding

- Hard X-ray single-shot spectrometer
 - High resolution @ 100 meV

Most Important Performance Metric

• Intensity of best SASE after a mono w/ given $\Delta E/E$ vs. intensity of best SEEDED after a mono of $\Delta E/E$

SASE 2 mJ after K-mono (1eV BW @8 keV) Solid attenuator 6, 8, 9 in

SASE after K-mono (150 pC) SASE after K-mono (150 pC) average 3.6 (rms jitter 62%) average 3.6 (rms jitter 62%) bitter 62%) **Seeded** (U1-2 out) after K-mono Solid attenuator 1-6, 8, 9 in

Spectral brightness increase = 12.3/3.6 = 3.5

FEL2012, Nara, Japan, August 28 2012

J. Welch et al., to be presented at FEL2012

HXRSS System @ LCLS-I

HXRSS system @ LCLS-I

Original SXRSS Optical Design for LCLS-II

- Primary performance specifications
 - (Grating Monochromator) resolving power to make pulse fully coherent, assuming flat-top profile
 - 200 eV, ΔT_{FWHM} =118 fs, R = 6400
 - 2000 eV ΔT_{FWHM} =41.6 fs, R = 22700
 - Seeding power (at start of 2nd undulator) required after all optics (from J. Wu)
 - 200 eV: > 10 kW
 - 2000 eV: > 20 kW
 - Seeding beam collinear w/ original beam
 - Transverse profile maintained if possible
 - Time delay
 - ~ 5 ps
 - Variable delay in tuning range is acceptable if within 10%

Large Footprint of Original Design

- Cylindrical focusing mirror M1
- Plane pre-mirror M2
- Variable-line-spacing grating G
- Slit
- Spherical focusing mirror M3

Figure 1: Schematics of the optics for soft X-ray self-seeding the LCLS-II.

Y. Feng, J. Wu, *et al.*, proceedings of 2010 FEL conference, Malmo, Sweden (2010).

FEL2012, Nara, Japan, August 28 2012

SXRSS for LCLS-I

- Physics requirements for X-ray optics
 - All optical components to fit a single undulator segment (3.87 m)
 - Resolving power > 5000
 - Energy range 500 to 1000 eV
 - Optical delay < 1 ps
 - Provide 1:1 imaging of source at equivalent point in seeding undulator
 - 20 kW seed power
 - Stay clear from e-beam by > 2.5 mm

22

Current X-ray Optics Design

- Toroidal variable-line-spacing grating G
 - Tangential radius of curvature R_t
 - Sagittal radius of curvature R_s
- Plane post-mirror M1
- Slit
- Cylindrical focusing mirror M2
- Plane mirror M3 for steering

SXRSS System

SLAO

System Performance Specifications

Parameter	Nominal	Minimum	Maximum	Unit
Photon energy	500-1000	300	1200	eV
Electron energy	3.35-4.74	2.6	5.2	GeV
Repetition rate	120	1	120	Hz
Bunch charge	150	10	250	pC
e- bunch length	25	5	50	fs
γ bunch length	36-18	-	-	fs
Photon bandwidth	2 x 10 ⁻⁴	-	-	-

Grating Specifications

Parameter	Nominal	Minimum	Maximum	Unit
Line density (D_0)	1123	0.2%	0.1%	1/mm
Linear coeff. (D_1)	1.6	1%	0.2%	1/mm ²
Quad. coeff. (D_2)	0.002	100%	2%	1/mm ³
Groove profile	Blazed 1.2°	-	-	n/a
Tangential radius	195	1%	0.1%	m
Sagittal radius	18	5%	1%	cm
Diffraction order	+1	-	-	-
Incident angle	89.00	-	-	0
Exit angle	85.61-86.82			0

Dispersion

Angular dispersion

$$\Delta\beta = -\frac{\lambda/R}{\sigma\cos\beta}$$

 At required resolving power, much smaller than diffraction, requiring focusing for spatial separation

Source distance	2972-4157	-	-	mm
Source size	30.6-24.7	-	-	μm
Image distance	1346.7-1348	-		mm
Image size	3-2.4	-	-	μm
Exit slit location	1348	0.1	0.1	mm
Exit slit size	3	5%	5%	μm
Optical delay	797.9-662.8	-	-	fs

FEL2012, Nara, Japan, August 28 2012

FEL2012, Nara, Japan, August 28 2012

Resolving Power

Energy Tuning

- Tuning achieved by a single rotation of M1
- Optical delay variable
 - 663 → 798 fs (0.27 fs/eV)

H/2

 $\delta H(\lambda)$

Н

FEL2012, Nara, Japan, August 28 2012

29

Grating Efficiency

 Use blazed profile for greater efficiency & high damage threshold w/ Pt coating

"Lumnab" code written by M. Neviere

Imaging

Imaging (w/ Gaussian and Ray Optics)

Pulse-Front Tilt and Elongation

phase fronts

G. Geloni et al, DESY 12-051, 2012

FEL2012, Nara, Japan, August 28 2012

Minimum Required Source Power

 Assuming 50 fs pulse length to produce 20 kW seed power

Technical Challenges

- Production and assembly of small optics
 - Grating's slope error < 1 μrad
 - Radius of curvature of M3 > |1 km|
- Alignment not trivial
 - System tolerances < those of SR monochromators
 - Tight space due to co-location w/ magnetic chicane
 - Only limited diagnostics available

Magnetic Chicane

SLAC

Four-dipole chicane system

Beam paths with horizontal displacements noted for the electron and X-ray beams are shown for the 1 keV case.

Magnetic Chicane

Main parameters of the electron beam chicane

Parameter	Nominal	Minimum	Maximum	Unit
e- beam delay	633-930	300	1000	fs
Delay precision	0.1	0	1	fs
R ₅₆	477-397	0	600	μm
Dipole bend angle	14.91-13.59	0	16.739	mrad
e- beam displ.	19.2-15.9	0	20	mm
H. separation	4.3-3.4	2	-	mm
Residual angle	0	0.0	0.1	µrad
Residual offset	0	0.0	3.0	μm

Diagnostics Design

- YAG:Ce crystal
 - Good sensitivity to both beams
 - Simultaneous observation of both beams
 - Radiation dose from e-beam exceeds undulator radiation damage tolerance
- Wire
 - Proven performance of undulator BFW meets e-beam requirement
 - X-ray position from secondary electrons induced in wire by x-rays and read out through charge amplifier
 - X-ray signal might be too weak, studies underway, but not conclusive yet if scheme might work

Possible Implementations

- Combination device
 - Wire for e-beam & YAG for x-rays on same actuator
 - Relative position of wire and x-ray beam image monitored by CCD

- Placed in long breaks between girders 9&10 and 12&13
- Scan position of whole assembly with upstream girder end

Presented at conceptual design review

SLAC

Grating and M1 chamber

courtesy of LBNL SXRSS team

• M2 and M3 chamber

SLAC

Slit assembly

FEL2012, Nara, Japan, August 28 2012

FEL simulations (J. Wu)

Input e- beam at SASE undulator entrance

Longitudinal phase space of the electron bunch at the entrance of undulator system.

Double-horn profile of the electron bunch compressed to 3 kA peak current in the central part.

FEL simulations (J. Wu)

SLAC

SASE FEL at grating

SASE FEL gain curve. The dashed vertical line stands for the end of U8; the dashed circle stands for the operation point.

SASE FEL spectrum at 40 m in the SASE undulator.

FEL2012, Nara, Japan, August 28 2012

FEL simulations (J. Wu)

Seeded FEL reaching saturation

Seeded FEL gain curve. The dashed vertical line stands for the end of U15.

Seeded FEL spectrum at 21 m in the SASE undulator.

Summary

- There are strong scientific cases for soft X-ray seeding at LCLS
- Self-seeding seems to be the best choice for immediate implementation for LCLS-I
- System design near completion including X-ray optics, chicane, diagnostics, minor refinement continuing
- FEL simulation complete and looks extremely promising
- SXRSS Project is in full motion
- Mechanical design on-going and maturing
- Installation in FY13 summer shutdown on schedule

SL AC