

SWISSFEL, The X-ray Free Electron Laser at PSI

Hans-H. Braun on behalf of the SwissFEL team

34th International Free Electron Laser Conference

Nara, August 26-31, 2012

- Overview
- Injector Test Facility
- Progress with C-band main Linac
- Undulators

SwissFEL

Aramis

1-7 Å hard X-ray FEL for **SASE with reservations for self seeded** operation, In-vacuum, planar undulators with variable gap. User operation from 2017

Athos

7-70 Å soft X-ray FEL for **SASE & self seeded** operation . APPLE II undulators with variable gap and full polarization control. User operation from 2019

Schedule

Injector

SwissFEL inector Tesf facility

laser beam : $\sigma_{x,y}$ = 270 µm, ΔT = 9.9 ps (FWHM), rise & falling time = 0.7 ps e-beams : $Q \sim 0.2$ nC, $\varepsilon_{thermal}$ = 0.195 µm, I_{peak} = 22 A

Commissiong crew with first beam

Low charge ($\sim 10 \text{ pC}$):

SwissFEL Injector Test Facility **Emittance optimization** (uncompressed beam)

Example measurements projected emittance (symmetrized single-quad scan)

Slice emittance measurement (200 pC)

ELOG #5602

Key steps for optimization:

- Optimization gun solenoid (incl. corrector quads)
- Orbit correction in S-band structures (wakefields)
- Local correction of dispersion at observation point

×10 ⁵	EMITTANCES / OPTICS ex = 162 ± 2 mm ey = 188 ± 3 nm bx = 15.26 ± 0.29 m by = 12.82 ± 0.21 m ax = 1.53 ± 0.03 ay = 147 ± 0.03 Mx = 1.01 My = 1.06	Summary emittance measurements (uncompressed beam):						
dc benikan		Measurement	σ _{laser} [mm]	ε _{,,,x} [μm]	ε _{n,y} [μm]	ε _{n,simulated} [μm]	ε _{n,required} @undulator [μm]	
2 -1 Data saved at 2012-006-03/MKE201208037174955	Data saved at 2012-08-03/MKE20120803T174959.h5	High-charge mode (~200 pC):						
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 normalized x .s normalized y .s x10		projected:	0.21	0.38	0.37	0.350	0.65	
0.2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15		core slice:	0.21	0.25	_	0.330	0.43	
		Low-charge mod						
		projected:	0.10	0.16	0.18	0.096	0.25	
		core slice:	0.10	≤ 0.15*	_	0.080	0.18	
0 5 10 15 0 5 10 15 measurement index measurement index	ELOG #7441							

*measurement limited by signal-to-noise ratio

2012	2013	2014	2015			2016		2017		
Beamo	Injector test facility levelopment and comp	onenttests	Mov int Swiss build	ing o FEL ling	Injector	commissioning		Opera linac ar commis	tion for nd FEL ssioning	operation for friendly users

Linac

SwissFEL C-Band Linac Module

C-Band Structure

First SwissFEL C-band cavity prototype successfully tested

mech. design & UP machining

HP RF set-up

LL RF measurements

HP RF processing

Results C-band short prototype structure high power tests

Test structure #	# cells	Ø iris	bake- out	P_{in}	E _{acc}	T _{pulse}	rep. rate	break- down prob.	$\beta_{\sf FN}$
		mm		MW	MV/m	μs	Hz		
1	11	14.6	yes	43	33.5	0.35	10	8·10 ⁻⁷	68
2	11	14.6	no	50	36.0	1.0	100	3·10 ⁻⁶	68
3*	11	11.2	no	49	57.0	0.8	100	1·10 ⁻⁶	45
SwissFEL nominal	113	14.6→11.2	no	28	28.0	0.35	100	1·10 ⁻⁸	

*Test in progress

RF structure assembly robot

New brazing furnace for 2m linac structures

Assembly & brazing set-up for series production

Undulator lines

MOPD37, N. Milas, S. Reiche,

THPD19,

R. Ganter , M. Aiba, H. Braun, M. Calvi, A. Fuchs, E. Hohmann, R. Ischebeck, H. Joehri, B. Keil, N. Milas, M. Negrazus, S. Reiche, S. Sanfilippo, T. Schmidt, P. Wiegand, "Technical Overview of SwissFEL Undulator Section"

U15 in-vacuum undulator for SwissFEL

THPD64,T. Schmidt, M. Calvi,"SwissFEL U15 Prototype Design and First Results"

Undulator frame at Daetwyler facilities

THPD63

M. Calvi, T. Schmidt, "SwissFEL U15 Magnet Assembly: First Experimental Results"

ARAMIS Endstations

Double crystal monochromator

Laser based instead of accelerator based

Strong-field single-cycle THz pulses generated in an organic crystal

Christoph P. Hauri,^{1,2,a)} Clemens Ruchert,¹ Carlo Vicario,¹ and Fernando Ardana^{1,2} ¹Paul Scherrer Institute, 5232 Villigen, Switzerland ²Physics Department, Ecole Polytechnique Federale de Lausanne, 1013 Lausanne, Switzerland

DAST : 4-N,N-dimethylamino-4'-N'methyl stilbazolium tosylate

strong optical nonlinearity, low absorption

IR-THz phase matching require 1.2-1.5 μm pump (OPA)

FROA04,

C. Hauri, F. Ardana-Lamas, M. Divall-Csatari, A. Trisorio, C. Vicario, C. Ruchert "New Laser Developments for Pump-probe Experiments at SwissFEL"

Experimental results

- Recorded peak E field >1.2 MV/cm, B > 0.35 T
- spectrum <5THz centered at v_c = 2 THz
- close to single cycle
- THz pulse energy up to 45 uJ
- Good shot-to-shot energy stability (rms 1%)
- Energy up-scaling feasible (larger crystal, more pump energy)

SwissFEL building

Ground water well for cooling water, first civil work for SwissFEL

Energy recovery for SwissFEL

Grundwasserkarte

Wärmerückgewinnung

MOOC02

S. Reiche, E.Prat, "Growth Rates and Coh. Properties of FODO-lattice based X-ray Free Electron Lasers"

MOPD36

F. Le Pimpec, A. Adelmann, S. Reiche, R. Zennaro, B. Grigoryan, "Dark Current Studies for SwissFEL"

MOPD37

N. Milas, S. Reiche, "Switchyard Design: Athos"

TUPD21

E. Prat, S. Reiche, D. Dunning, "-Seeding Design for SwissFEL"

TUPD27

M. Aiba, M.Böge, "Beam based Alignment of X-FEL Undulator Section Utilizing Corrector Pattern"

TUPD28,

B. Beutner, "Bunch Compression Layout and Longitudinal Operation Modes for the SwissFEL Aramis Line"

THPD19

R. Ganter et al., "Technical Overview of SwissFEL Undulator Section"

THPD63

M. Calvi, T. Schmidt, "SwissFEL U15 Magnet Assembly: First Experimental Results"

THPD64

T. Schmidt, M. Calvi, "SwissFEL U15 Prototype Design and First Results"

FROA04

C. Hauri, "New Laser Developments for Pump-probe Experiments at SwissFEL"

New release of design report, April 2012

