

FACULTY OF SCIENCE, MATHEMATICS AND COMPUTING SCIENCE

Rienk Jongma

First Lasing of the THz FEL Free-electron

Laser for Advanced spectroscopy and high-Resolution Experiments Radboud University Nijmegen

- Motivation for FLARE
- FLARE
 - Design and construction
 - First lasing
 - Status
- Extension of the FEL facility

FLARE

The combination with Very High Magnetic Fields → advanced ESR/EPR thanks to the HFML⁺

- Molecular THz spectroscopy
 - Action Spectroscopy → FELIX-like experiments at longer wavelengths
 - Spectroscopy at very **low T** (helium droplets \rightarrow Bochum)
 - Spectroscopy in liquids (low resolution)
 - High resolution spectroscopy of astronomically relevant species (HIFI / Herschel)
 - Ultra-fast electron diffraction (Luiten/TUE)

Molecular THz spectroscopy

- Action Spectroscopy → FELIX-like experiments at longer wavelengths
- Spectroscopy at very **low T** (helium droplets \rightarrow Bochum)
- Spectroscopy in liquids (low resolution)
- High resolution spectroscopy of astronomically relevant species (HIFI / Herschel)
- Ultra-fast electron diffraction (Luiten/TUE)

FLARE

Molecular THz spectroscopy

- Action Spectroscopy → FELIX-like experiments at longer wavelengths
- Spectroscopy at very **low T** (helium droplets \rightarrow Bochum)
- Spectroscopy in liquids (low resolution)
- High resolution spectroscopy of astronomically relevant species (HIFI / Herschel)
- Ultra-fast electron diffraction (Luiten/TUE)

Construction and assembly of FLARE

The FLARE system

Pump-probe mode

Spectroscopic mode

Spectroscopic mode

Demonstrated previously: Oepts and Colson (1990), Bakker, Oepts, Van der Meer *et al.* (1993), Oepts, Weits, Van der Meer *et al.* (1996-1998), Szarmes, and Madey (1993), Israeli Project (2005) and others . .

Spectroscopic mode

- Next step: pulse shaping for EPR/ESR
 - First steps towards pulse-shaping: visit poster THPD03 by Szymon Smolarek

Status of FLARE

Control Lasing and power

- 🕜 Spectral range: 100-1400 μm
- Optical transport to diagnostics station
- Spectral calibration operational

Upconversion results

Scanning range

Spontaneous coherence

The FELIX facility Nijmegen

Plans for the FELIX facility Nijmegen:
 Wednesday afternoon by Britta Redlich

750 KG

Conclusions

- Lasing and power
- 🅜 Spectral range: 100-1400 μm
- Optical transport to diagnostics station
- Spectral calibration operational
- 🕜 Spontaneous coherence
- Non-continuous scanning and "difficult" wavelengths
- Institute for Molecules and Materials

- To be realized:
 - Optical transport to user experiments incl. HFML magnets
 - Completion FELIX / FELICE re-assembly
 - Start of user experiments: 2013

CIT

The FLARE team:

Thanks to:

• Support by

- Rijnhuizen and now Radboud University:
 Lex van der Meer + FELIX team
- Helmholtz-Zentrum Dresden-Rossendorf:
 Ulf Lehnert, Rüdi Wünch, Wolfgang Seidel,
 Peter Michel
- Research Instruments GmbH:
 Christian Piel + team
- Financial support
 - Radboud University

and NW

FLARE

The FLARE system

Cavity

Waveguide (Outcoupling slit) (Intra-cavity interferometers) Output: 100-1500 micron Output: 100-1500 micron A resolution T.5 m Optical resolution A resolut

1800 a-chromatic bend

FLARE

LINAC 10 Hz - 3 GHz - 200 pC

Upconversion scheme

Upconversion results

Intensity [A.U.]

Spontaneous coherence

Spontaneous coherence

Intensity [A.U.]

Magneto-optical Spectroscopy

- ESR & ECR frequencies move towards THz
 - e-, lattice vibrations, polarons and SC band gaps spectroscopy
 - saturation spectroscopy and coherent THz photon-echo spectroscopy

• Dynamics and Spectroscopy of Charge Carriers

- Transport in confined systems (quantum dots)
- **Pump-probe experiments** in high magnetic fields
- Optical-THz-NMR experiments
 - NMR sensitivity enhancement by hyperpolarized nuclei
 - Need for powerful (CW) source
 - FLARE may contribute to DNP

FLARE specifications

Pump-probe mode

- Spectral resolution
- Power

0.5 - 2% (10 - 100 ps) >100 kWatt / 10 kW

Demonstrated previously: Oepts and Colson (1990), Bakker, Oepts, Van der Meer *et al.* (1993), Oepts, Weits, Van der Meer *et al.* (1996-1998), Szarmes, and Madey (1993), Israeli Project (2005) and others . .

FLARE specifications

Pump-probe mode

- Spectral resolution
- Power

0.5 - 2% (10 - 100 ps) >100 kWatt / 10 kW

Spectroscopic mode

- Spectral resolution
- Power

10⁻⁶ - 10⁻⁵ (10 μs) 50 Watt

FLARE specifications

Pump-probe mode

- Spectral resolution
- Power

0.5 - 2% (10 - 100 ps) >100 kWatt / 10 kW

Spectroscopic mode

- Spectral resolution
- Power

10⁻⁶ - 10⁻⁵ (10 μs) 50 Watt

Relative intensity (a.u.)

Demonstrated previously: Oepts and Colson (1990), Bakker, Oepts, Van der Meer *et al.* (1993), Oepts, Weits, Van der Meer *et al.* (1996-1998), Szarmes, and Madey (1993), Israeli Project (2005) and others . .

45 T Hybrid magnet (2014)

Resistive insert

Thank you for your attention!

Summary of FLARE specs

Pump-probe mode (1% bandwidth)

	Units	λ=100 μm	λ=1500 μm
Micropulse energy	μJ	3	
Macropulse energy	mJ	60	
Macropulse avg. power	kW	8	
Avg. power	W	0.6	
Micropulse length	Psec	10	100
Absolute Bandwidth	cm ⁻¹	1	0.06
Peak power in micropulse	Watt	4 10 ⁵	6 10 ³
Power density	Watt cm ⁻²	5 107	2 105
Max Electric Field	V cm ⁻¹	3 10 ⁵	5 104
Ponderomotive energy	eV	150	$2.5 \ 10^3$

Spectroscopic mode

	Unit	λ=100 μm	λ=1500 μm
Absolute Bandwidth	MHz	0.1	0.1
Relative Bandwidth	%	3 10-9	5. 10-8
Power during macropulse	Watt	50	400
Power density	Watt cm ⁻²	104	4 10 ²

<u>Group velocity:</u> $v_g = \frac{d\omega}{dk_z} < c$

Results (FLARE is conventional FEL)

Downstream mirror

- Adjustable **outcoupling slit** (hole coupling)
- Close to first mirror of optical distribution system
- Future implementation Michelson interferometer (removable beam-splitter)

FLARE

Optical distribution

- LARGE system (HZDR / RU design)
 - 250 mm diameter tubing / mirrors
 - 150 m after full realization
 - Refocusing every 8-10 m
 - First part completed and tested

