
COLLECTIVE AND INDIVIDUAL ASPECTS OF FLUCTUATIONS IN
RELATIVISTIC ELECTRON BEAMS FOR FREE-ELECTRON LASERS∗

R.R. Lindberg† and K.-J. Kim, ANL, Argonne, IL 60439, USA

Abstract
Fluctuations in relativistic electron beams for free-

electron lasers (FELs) exhibit both collective and individ-

ual particle aspects, similar to that seen in non-relativistic

plasmas. We show that the density fluctuations are de-

scribed by a linear combination of the collective plasma

oscillation and the random individual motion of Debye-

screened dressed particles. The relative importance of the

individual to the collective motion is determined by com-

paring the fluctuation length scale divided by two pi with

the relativistic beam Debye length. Taking into account

the fact that the velocity spread is caused by both the en-

ergy spread and the angular divergence, we derive a simple

formula for the minimum value of the Debye length using a

solvable 1-D model. For electron beams used for x-ray self-

amplified spontaneous emission (SASE) we find that the

Debye length is comparable to the radiation wavelength,

and that therefore the collective motion is not relevant..

INTRODUCTION
Shot noise in relativistic electron beams has its origins in

the discrete nature of the electron: over sufficiently small

time and length scales the current will fluctuate due to vari-

ations in the number of electrons measured. However, the

term “shot noise” has a more precise definition with more

restrictive properties than being merely the fluctuations as-

sociated with discrete particles. Specifically, shot noise is

connected with a Poisson process; in an electron beam this

means that while the average flow is given by the current,

the arrival time of any particular electron is independent of

the arrival times of all other electrons, and the characteristic

fluctuations in number N scales as δN/N ∼ 1/
√
N . To be

more explicit, we define the time of the jth electron in the

bunch as ζj(z) ≡ z − cβ0tj , where z and tj are the longi-

tudinal coordinate and particle time, respectively, while β0

is the reference velocity scaled by the speed of light c. If

we consider the spectral content of the density fluctuations

or bunching given by

bk(z) ≡ 1

N

N∑
j=1

e−ikζj(z), (1)

than the ensemble average
〈
bk(z)

〉
= 0, while the average

value of
〈|bk(z)|2〉 = 1/N for a beam that is characterized

by shot noise.

The equilibrium fluctuations of an ideal gas are those

of shot noise. Additionally, the emission processes of
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excited atoms, diodes, and cathodes is typically assumed

to be Poisson, so that laser light, electric currents, and

particle beams are produced with shot-noise type fluctua-

tions. However, inter-particle forces can induce correla-

tions that can change the fluctuation statistics from that of

shot noise. For example, the ponderomotive force in an

undulator tends to increase any density fluctuations near

the resonant wavelength, which is the origin of the free-

electron laser (FEL) instability and self-amplified sponta-

neous emission (SASE). On the other hand, electrostatic

repulsion tends to smooth out density fluctuations. This

physical effect has been given the name “shot noise sup-

pression” in the FEL literature [1, 2, 3].

Due to the long-range electrostatic force, the equlibrium

density fluctuations in a plasma are quite different than

those of shot noise. We can understand this by considering

a plasma of density n0, whose natural plasma frequency is

ωp ≡ √
e2n0/ε0m, where e is the magnitude of the elec-

tron charge, m is its mass, and ε0 is the vacuum dielectric

constant. If we assume that the rms thermal spread is σv ,

we can define the Debye length λD ≡ σv/ωp which is the

distance a particle moves due to its thermal motion dur-

ing one plasma oscillation. For distances less than 2πλD,

the particle is not aware of the plasma, and individual par-

ticle interactions dominate the dynamics. Conversely, the

plasma can organize itself so as to screen any individual test

particle over length-scales much longer than 2πλD, so that

the long-scale physics is characterized by collective mo-

tion of the particles [the plasma (or Langmuir) oscillation].

To be more quantitative, Rostoker has shown in an elegant

calculation that in a Maxwellian plasma the ensemble av-

eraged bunching squared is given by [4]

〈
|bk|2

〉
=

1

N

(kλD)2

1 + (kλD)2
. (2)

In the limit kλD � 1,
〈|bk|2〉 → (kλD)2/N , and we

see that the correlations have reduced the density fluctua-

tions far below that of shot noise. The electrostatic energy

associated with these density fluctuations can be shown to

be kBσ
2
v/2 per mode as one would expect from equiparti-

tion (kB is Boltzmann’s constant). In the other limit, when

kλD � 1 the fluctuations in the bunching approach that of

shot noise,
〈|bk|2〉 ≈ 1.

In the following we review a simple non-equilibrium

model for the electron beam developed in [5, 6] which

shares certain characteristics with classical plasmas. We

compute the fluctuation characteristics and compare these

to simple simulation results. We then compute the relevant

Debye length, and show that collective oscillations are not

relevant for electron beams suitable for x-ray generation.
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FLUCTUATIONS IN RELATIVISTIC
ELECTRON BEAMS

While an electron beam can be considered a non-neutral

plasma, it is often not in equilibrium. In fact, electron

beams are created having shot noise statistics due to the

fact that emission from a cathode is a Poisson process, and

typically one rapidly accelerates the beam to high energies

so as to “freeze out” the electrostatic repulsion. For this

reason, we will consider a simple initial value problem for

the electron beam in the presence of the electrostatic force

that was first introduced in [5, 6]. Recently, the 3D ini-

tial value problem including emittance effects and betatron

oscillations was presented in [7]. Our goal here is rather

modest, however: we merely want to point out the limi-

tations of the collective response at x-ray wavelengths, so

that we have decided to sacrifice the added generality of [7]

in the interest of greater mathematical simplicity.

To begin, we must first find the canonical conjugate to

the particle time ζj , which we define to be the velocity dif-

ference vj ≡ dζj/dz = 1 − β0/β. We furthermore in-

troduce the particle distribution function f(ζ, v; z) over the

phase space (ζ, v), which satisfies

∂f

∂z
+ v

∂f

∂ζ
− eE

mc2β0γ3
0

∂f

∂v
= 0. (3)

Here γ0 ≡ (1 − β2
0)
−1/2 is the Lorentz factor of the refer-

ence particle, and the longitudinal component of the elec-

tric field E(ζ, z) satisfies Gauss’s equation

∂E

∂z
+

∂E

∂ζ
= − e

ε0

∫
dv f(ζ, v; z). (4)

To approximately solve the system (3)-(4), we divide

the distribution function into the smooth background term

f0(v) and the perturbation f̂(ζ, v; z):

f = f0(v) + f̂(ζ, v; z) ≡ n0g(v) + f̂(ζ, v; z), (5)

where the momentum distribution function g associated

with f0 is normalized such that
∫
dv g(v) = 1. We in-

troduce the Laplace transform in z and Fourier transform

in ζ as

f̂ω,k(v) =
1

2π

∞∫
0

dz eiωz

∞∫
−∞

dζ e−ikζ f̂(ζ, v; z) (6)

Eω,k =
1

2π

∞∫
0

dz eiωz

∞∫
−∞

dζ e−ikζE(ζ; z); (7)

note that the “frequency” ω has the dimensions of inverse

length. We treat f0 and f̂ as, respectively, zeroth order

and first order quantities, which implies that electric field

is also first order |E| ∼ |f̂ | for finite wavelengths such that

k 	= 0. We additionally assume that ω � k, in which case

we obtain the following linear system of equations:

(ω − kv)f̂ω,k +
ien0g

′(v)
mc2β0γ3

0

Eω,k = if̂k(v; 0) (8)

−kEω,k =
ie

ε0

∫
dv f̂ω,k(v), (9)

where g′(v) ≡ dg/dv. Solving (8)-(9) for the electric field

in terms of the initial conditions is trivial. We take the dis-

tribution function to be of the Klimontovich form

f(ζ, v; z) =
1

A

Ne∑
j=1

δ[ζ − ζj(z)]δ[v − vj(z)]. (10)

Using the initial value f(ζ, v; 0), the electric field is

Eω,k =
e

2πkε0ε(k, ω)

1

A

N∑
j=1

e−ikζj(0)

ω − kvj(0)
, (11)

where we have introduced the normalized dielectric re-

sponse function

ε(k, ω) = 1 +
Ω2

p

k

∫
dv

g′(v)
ω − kv(0)

. (12)

Here Ωp =
√
e2n0/ε0mc2β0γ3

0 is the relativistic electron

beam plasma frequency in the laboratory frame. The beam

bunching factor bk,ω = (kAε0/eN)Eω,k. Taking the in-

verse Laplace transform, our method yields the solution

bk(z) =
i

2πN

∫
L

dω
eiωz

ε(k, ω)

N∑
j=1

e−ikζj(0)

ω − kvj(0)
, (13)

where the integral along the Landau contour L can be per-

formed by finding the poles and evaluating the residues.

We will find it instructive to separate the poles into two

groups: the first obtained from the zeros of the dielectric

function defined by ωq : ε(k, ωq) = 0; the second are given

by ω = kvj(0) for j = 1, 2, . . . , N . We use the superscript

C to distinguish the part of the bunching factor arising from

the former set of poles with ω = ωq , while we identify the

latter poles the superscript I:

bk(z) = bCk (z) + bIk(z) (14)

with

bCk (z) =
∑
q

e−iωq
1

ε′(k, ωq)

1

N

N∑
j=1

e−ikζj(0)

ωq − kvj(0)
(15)

bIk(z) =
1

Ne

N∑
j=1

e−ik(ζ0
j+vj(0))z

ε[k, kvj(0)]
. (16)

The modes in Eq. (15) oscillate at the frequencies ωq , and

therefore represent the collective motion associated with

the plasma wave dynamics. On the other hand, the indi-

vidual part of the bunching bIk(z) involves a sum over the
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independent particle motion. This decomposition is a pre-

cise formulation of that first introduced by Pines and Bohm

[8]. The relative importance is determined by comparing

the density perturbation length scale ∼ 1/k with the De-

bye length λD = σv/Ωp.

To make these statements explicit, we assume that the

smooth part of the momentum distribution is a Gaussian,

g(v) = exp(−v2/2σ2
v)
/√

2πσv. (17)

First, we show that bCk (z) yields the familiar plasma wave

dynamics in the limit kλD � 1. In this case, the diectric

function is approximately given by ε(k, ω) ≈ 1 − Ω2
p/ω

2,

and there are two poles whose magnitude equals plasma

frequency ωq = ±Ωp [9]. When kλD � 1 we also have

Ωp 
 kvj(0) for most values of vj(0), and collective part

of the bunching Eq. (15) can be approximately written as

bCk (z) ≈ cos(Ωpz)
1

N

N∑
j=1

e−ikζj(0)

− ik

Ωp
sin(Ωpz)

1

N

N∑
j=1

vj(0)e
−ikζj(0).

(18)

A similar expression can be written for the collective ve-

locity bunching
∑

j vj(z)e
−ikζj(z)/N . The two averages

describe the plasma wave, and we see that the bunching

oscillates between its initial value and that of the collec-

tive velocity. For a beam initially described by shot-noise

statistics, bk(0) ∼ 1/
√
N , while at z = 0 the collective

velocity ∼ σv/
√
N . Thus, when kλD � 1 the fluctua-

tions in
〈|bk|2〉 decrease from 1/N at z = 0 to (kλD)2/N

after a quarter plasma period. At the same time the fluc-

tuations in the collective velocity increase, and eventually

returns to its initial value at Ωz = 2π. This effect is well-

known in microwave devices, and recently it was proposed

that such “shot noise suppression” could be useful for FEL

applications [1, 2]. We will show the Debye length for

present and proposed devices is too long to be applied at x-

ray wavelengths, but it may find use at longer wavelengths;

for example, the microbunching instability can severely de-

grade beam quality during compression, and smoothing out

fluctuations at and below optical wavelengths may prove to

be a useful manipulation. The collective plasma response

was also studied analytically in 3D in [7], with comparable

qualitative results. Next, we turn to the individual compo-

nent, which was not the focus of these other studies.

The individual component can be computed as

〈∣∣bIk(z)∣∣2〉 =
1

N

(kλD)2

1 + (kλD)2
. (19)

This is identical to the equilibrium fluctuations in a classi-

cal plasma (2). Thus, the bunching squared is comprised of

a collective part that is important for kλD � 1 and which

depends on the initial statistical distribution of the particles,

and an individual component that matches the equilibrium

fluctuations and is time stationary. In addition, there are

Figure 1: Evolution of the bunching for an electron dis-

tribution whose positions are initially random (given by

shot noise) and whose velocities are Gaussian distributed.

We average |bk(z)|2 over 100 statistically independent in-

stances to obtain
〈|bk(z)|2〉. The density fluctuations reach

a minimum after one-quarter plasma period, with the value

close to that predicted by
〈|bIk|2〉 (dotted lines).

cross-terms from the bCk and bIk ; simulations indicate that

they comprise a small correction if kλD � 1, while modi-

fying our simple results by ∼ 20% if kλD � 1.

To demonstrate the fluctuation evolution from a beam

that is initially random and uncorrelated (having shot-noise

type statistics), we have modified the galactic simulation

code GADGET-2 [10] to simulate a repulsive rather than at-

tractive force. i.e., we use GADGET-2 with “negative grav-

ity.” GADGET-2 is a massively parallel code that solves the

N -body problem using the fast multipole expansion. By di-

viding the long-range gravitational (or electrostatic) force

into a short range part that is solved exactly and a long-

range part that is evaluated using multipole expressions, it

reduces the scaling of the number of operations required

to solve the N body problem from O(N2) to O(N logN).
While there are a few electrostatic codes that also use such

methods to solve for the full particle interactions, we chose

to modify GADGET-2 because it is open source, freely

available, and well-optimized for parallel processing. Fi-

nally, we note that traditional particle-in-cell (PIC) codes

are only appropriate to simulate mean field dynamics; since

PIC codes do not completely resolve the interactions of par-

ticles within a given cell and are particularly susceptible to

error from discrete particle noise, they are not suitable for

the present investigation.

We show the results in Fig. 1. The fluctuation level in

Ne

〈|bk(z)|2〉 decreases from its initial value near unity to a

value that is fairly well-predicted by the individual average

(19), which we plot as dotted lines.

The results of Fig. 1 were obtained by averaging 100

different independent instances, each of which employ

400000 particles in a box with periodic boundary condi-

tions. Thus, these preliminary studies verifying the ba-

sic physics neglect any transverse spreading/focusing; we
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Table 1: Numerical example for two modern FEL facili-

ties. The first column lists the existing hard x-ray LCLS

parameters, the second has those of the NGLS soft x-ray

device, while the final column includes the LCLS injector

parameters at 135 MeV.

LCLS NGLS LCLS injector
γ0 26693 3914 264

Current [A] 3000 500 40

σγ 3.5 0.098 0.0053

εx,n [mm-mrad] 0.4 0.6 0.4

2πλD|min [nm] 0.3 1.5 10

chose to focus on this simplification because we felt that it

would be simplest to perform and interpret, and consider

the results of Fig. 1 to represent an idealized situation that

will typically be degraded by other effects. In the future we

plan to include more more realistic initial conditions that do

not assume a periodic system.

Finally, we need to determine what is the relevant Debye

length for relativistic electron beams suitable for x-ray free-

electron lasers. To determine the rms spread in vj ≡ 1 −
β0/βj , we consider the longitudinal velocity βj = (1 −
x′j

2 − 1/γ2
j )

1/2, where x′ is the angle the electron makes

with the z-axis. Assuming that 1− β0 � 1, we have

vj ≈ γj − γ0
γ0

− 1

2
x′j

2
. (20)

Thus, deviations in v are due to spreads in both the energy

and the angle. The rms spread appropriate for the Debye

length is therefore

σ2
v =

σ2
γ

γ2
0

+
1

4
σ2
x′ . (21)

Replacing the angular spread with the normalized beam

emittance εx,n and transverse size σx via σx′ = εx,n/γ0σx,

the Debye length can be written in terms of the current I as

λD =

√
IA
2γ0I

(
σ2
xσ

2
γ

γ2
0

+
1

4σ2
x

ε4x,n

)
, (22)

where IA = 4πε0mc3/e ≈ 17 kA is the Alfvén cur-

rent. For a beam with given emittance and energy spread,

the minimum possible Debye length can be determined by

equating the two terms in the parentheses, yielding

λD|min =
1

γ0

√
IA
I

σγε2x,n
2

=
1

γ0

√
IA
2ec

1

Be
, (23)

where Be is the electron beam brightness, i.e., the number

of particles per phase space volume. Thus, (γ0λD|min)
2

scales inversely with the electron beam brightness, which

can only increase during typical beam transport and accel-

eration.

To put some concrete numbers on the range of Debye

lengths one might have for FEL-type electron beams, we

include in Table 1 parameters for hard x-ray generation at

the Linac Coherent Light Source (LCLS) from [11] and the

proposed soft x-ray Next Generation Light Source (NGLS)

facility at Berkeley National Lab [12]. We see that at the

target hard x-ray wavelengths of 6 to 1.5 Å the LCLS has

kλD � 1 and the plasma wave is not important; similar

conditions obtain for the NGLS at wavelengths less than

3 nm. For all the listed parameters the minimum Debye

length is much less than 100 nm, so that reduction in fluc-

tuations can be expected to be observed in the optical part

of the spectrum, as has been recently measured in [13].

Finally, note that at the LCLS γ0λD|min is about a fac-

tor of three larger at high energy (and current) than it is at

the injector. This is because the beam energy spread is in-

creased before compression to mitigate the microbunching

stability. To make the plasma wave relevant at high en-

ergy and current would therefore first require a method of

compressing the beam without increasing energy spread. If

one could do this, than reducing the fluctuations in
〈|bk|2〉

to 0.1/N would also require an increase in LCLS beam

brightness by at least a factor of 4.
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