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Abstract 
    Laser-based techniques have been widely used for 
cleaning metal photocathodes to increase quantum 
efficiency (QE). However, the impact of laser cleaning on 
cathode uniformity and thereby on electron beam quality 
are less understood. We are evaluating whether this 
technique can be applied to revive photocathodes used for 
electron beam sources in advanced x-ray free electron 
laser (FEL) facilities, such as the Linac Coherent Light 
Source (LCLS) at the SLAC. Laser-based cleaning was 
applied to two separate areas of the current LCLS 
photocathode on July 4 and July 26, 2011, respectively. 
QE was increased by 8-10 times upon the laser cleaning. 
Since the cleaning, routine operation has exhibited a slow 
evolution of QE improvement and comparatively rapid 
improvement of transverse emittance, with a factor-of-3 
QE enhancement over five months, and a significant 
emittance improvement over the initial 2-3 weeks 
following the cleaning. Currently, the QE of the LCLS 
photocathode is holding constant at about 1.2104, with a 
normalized injector emittance of about 0.3 µm for a 150-
pC bunch charge. With proper procedures, the laser 
cleaning technique appears to be a viable tool to revive 
the LCLS photocathode. We present observations and 
analyses for QE and emittance evolution in time 
following laser-based cleaning of the LCLS photocathode, 
and comparison to previous studies, the measured thermal 
emittance versus QE and comparison to the model.  

OVERVIEW 
   The Linac Coherent Light Source (LCLS), located at the 
SLAC, has been successfully operated for users for more 
than three years [1]. Its copper-cathode based photo 
injector has produced an ultra-low emittance electron 
beam [2] for the x-ray free electron laser (FEL). To date, 
three polycrystalline copper photocathodes have been 
used in LCLS injector operation since its initial 
commissioning [3]. The first cathode had quantum 
efficiency (QE), 2-310-5 after some processing, sufficient 
for initial commissioning from early of 2007 to July 2008. 
The second cathode had a QE of about 510-5 and was 
used for about three years of operation, from July 2008 to 
May 2011. When the LCLS repetition rate was increased 
from 60 Hz to 120 Hz, its QE quickly decayed to one half 
its initial value within 7-10 days. For this reason, the 
transverse position of the drive laser on the cathode had to 
be moved frequently to find new high-QE spots. This 

movement and subsequent retuning of the photo injector 
occupied significant LCLS machine time, and only a 
limited number of laser locations on the cathode could 
deliver the desired low emittance electron beam for 
reasonably good FEL performance. The second cathode 
was then replaced by a third one in May 2011, but the 
initial QE of this third cathode was only ~510-6, 
insufficient for user operations. Eventually, laser-based 
cleaning was initiated on the third photocathode, in order 
to boost the QE. Previous cleaning attempts for the third 
cathode, using in-situ gun hydrogen plasma cleaning [3], 
failed to achieve adequate QE improvement. Laser-based 
cleaning techniques have been used in the photo injector 
community for many years on metal cathodes, such as 
copper and Mg, to enhance QE [4-6]. A high-intensity 
laser beam, interacting with the cathode, may ablate the 
cathode surface and/or remove contamination, thereby 
resulting in a QE increase. However, the impact of laser 
cleaning on cathode uniformity and electron beam 
emittance are unknown at present. We evaluated whether 
this technique could be used to revive the LCLS 
photocathode for x-ray FEL facilities, which have 
stringent requirements on the beam emittance as well as 
the QE. Laser-based cleaning for the LCLS photocathode 
was successfully performed in July 2011, and the 
evolution of the QE and emittance following the cleaning 
will be presented.  

LASER CLEANING PARAMETERS AND 
PROCEDURES  

     The applied laser fluence is a key parameter in laser-
based cleaning for metal cathodes. The fluence of the 
refocused UV drive laser (253 nm) needs to be properly 
chosen so that the laser can effectively remove surface 
contamination to enhance the QE, but will not destroy the 
cathode surface quality or change the surface 
morphology. For this application to the LCLS copper 
cathode, the laser fluence used for laser cleaning was 
determined by the “vacuum activity” in the photocathode 
RF gun [5]. In other words, the applied laser fluence 
(laser energy for a given laser spot size) had to be 
gradually increased until a change in vacuum pressure in 
the RF gun was observed. In the LCLS gun system, the 
nearest vacuum gauge to monitor the gun vacuum is 
located at a nearby RF-feed waveguide [7]. The cold 
cathode ion gauge on the waveguide is about 50 cm away 
from the cathode. Estimate shows the vacuum pressure on 
the cathode is 1.3-1.5 times higher than the ion gauge [8]. 
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beyond +1.5 mm or -1.5 mm for laser central x-location, 
was still within the 10-6 scale. Data in Figure 3 indicates 
that the QE measured eight months later in the un-cleaned 
area was still at a very low level, although the overall gun 
vacuum had continuously improved.   

 
Figure 2: Evolution of QE (top) and gun waveguide 
vacuum (bottom) during the five months following laser 
cleaning, for the cathode spot being used for routine user 
operations. 

 
Figure 3: The QE in the area B measured eight months 
following laser cleaning. 

   Although detailed surface and material science studies 
for the third LCLS cathode are still pending, we assume 
that the cathode surface exposed to laser cleaning still 
retained contaminants, which were pumped out over time, 
causing a slow increase in the QE. However, the 
contaminants on the un-cleaned surface remain 
unchanged, and appear strongly bound to the surface, and 
are not removed as a result of vacuum improvement. 
Cathode R&D programs to further understand the detailed 
surface and material processes that take place during the 
laser cleaning are under way at the SLAC [9]. 
    The first LCLS cathode was also processed by the laser 
cleanings in 2007 and 2008 but using different procedures 
from the current one for the third LCLS cathode. The QE 
of the first cathode decayed quickly during the operations 
following the cleaning. During the laser cleaning process 
in 2007, the vacuum measured on the gun-waveguide 
increased to about 110-8 Torr from the base vacuum of 
110-9 Torr. The first cathode was laser cleaned again in 
2008. The gun vacuum rise during the cleanings in 2008 
was at least 2-3 times for the current cathode (~0.510-10 
Torr). The laser fluence for cleaning the first cathode was 
at least twice for the third cathode. A small vacuum leak 

in the waveguide for the first accelerator section 
following the gun system was observed during the early 
days of the LCLS operations, which caused an additional 
gas load to the cathode. Similar phenomena for cleaning 
Mg cathode were also observed [6]. Upon the laser 
cleaning, the QE of the Mg cathode improved two orders 
of magnitudes [6] against one order for the third LCLS 
cathode. The laser fluence and/or laser exposed time for 
the cleaning was much higher than for the current third 
LCLS photocathode. During operation of this Mg cathode 
the QE following laser cleaning did not decay during the 
first three months of operation but did not further increase 
as we observed for the third LCLS cathode. The 
comparison of the previous cleaning results to the third 
LCLS cathode illustrate that the laser fluence and laser 
exposed time for the cleaning need be properly chosen to 
have a good QE evolution during operations following the 
cleaning. 

Emittance Evolution     
   The LCLS injector emittance measurements are made 
using a quadrupole scan. After acceleration of the electron 
beam to 135 MeV, the beam is intercepted by a 1-m 
thick aluminum screen. Here, the transverse electron 
beam size is measured using optical transition radiation 
(OTR) from the screen, which is imaged onto a digital 
camera. The strength of an upstream quadrupole is varied 
over several settings while the horizontal beam size is 
measured on the OTR screen. Figure 4 shows the 
emittance evolution from July 4, 2011, to February 2012, 
for the spot marked with yellow circle in area A, 
following laser cleaning. The location of the cathode spot 
is at x=+0.3 mm and y=+0.35 mm, close to the cathode 
center, in the area A. The emittance measured 
immediately after laser cleaning was about 0.75 m for a 
150 pC bunch charge. It then improved to 0.3-0.4 m 
within 2-3 weeks following the cleaning process. The 
converged emittance was close to expectation from 
simulations with ImpactT [10], 0.35 m for 150 pC. The 
corresponding slice emittance also improved for both 150 
pC and 250 pC bunch charge, as shown in Figure 4. The 
emittance for an "idle" spot in area B cleaned on July 26, 
2011, one not used during routine operations, centrally 
located at a -2.2 mm of y-offset from the cathode center, 
was also characterized. The emittance measured on 
September 6, 2011 had been converged to our 
expectation, x/y=0.52/0.48 m from simulations for 250 
pC [11]. About 90 of phase advance through the solenoid 
results in the coupling of y-plane to x-plane, which 
indicates the y-offset causes x-emittance growth. 
   The emittance improvement, compared with the value 
measured immediately after cleaning, is attributed to an 
improved, more-uniform QE emission [11]. The 
continuous RF conditioning during routine user 
operations may smooth-out a non-uniform surface created 
by laser cleaning. 
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Figure 4: Emittance evolution for the spot with yellow 
circle: the emittance improvement after February 9, 2012 
is due to use of a Gaussian-cut laser spatial profile [12].    

Thermal Emittance versus QE 
    An S-band transverse RF cavity, located upstream of 
the OTR screen, is used to streak the beam vertically 
across the screen, in order to time-resolve the horizontal 
emittance. The horizontal emittance measurement is then 
"sliced up" into a number of bins in time (thirteen for 
example). The thermal emittance is taken from the core 
time-sliced emittance measurements at 20 pC as a 
function of laser spot size, assuming that space charge 
forces and other emittance-growth sources are negligible 
for this charge. Figure 5 shows a comparison of the 
thermal emittance for the previous copper cathode, which 
was never laser-cleaning processed, and the current 
copper cathode, processed by laser cleaning. For the 
previous copper cathode, the measured thermal emittance 
was 0.9 m/mm-rms [13], as shown in Figure 5 (slice 
emittance divided by laser rms beam size). For the current 
cathode, processed by laser cleaning on July 4, 2011, the 
thermal emittance measured a week after cleaning was 
much worse than the normal value. This is now 
understood, since it appears to take 2-3 weeks for the 
emittance to evolve to a normal value following laser 
cleaning, as described in the previous section. A few 
measurements taken months later, for the same spot on 
the cathode, following laser cleaning, as shown in Figure 
5, illustrate that the thermal emittance values for the 
current cathode with cleaning were: 1) close to the 
thermal emittance of the previous cathode, and 2) close to 
each other, despite exhibiting different QE values (up to a 
factor of 2), which does not agree with theoretical 
predictions [14]. According to the model, the “theoretical” 
thermal emittance is always correlated to the measured 
QE. However, the recent data shows thermal emittance is 
independent of, rather than correlated to, the measured 
QE. Some residual contamination that changes the QE 
may not modify the work function, and thereby the 
cathode thermal emittance. We conclude that the 
theoretical model does not completely describe the 
photoemission process.  

 
Figure 5: Thermal emittance for the previous cathode (red 
squares), which was never laser-cleaning processed, and 
the current cathode, which was processed by the laser 
cleaning.  

CONCLUSION 
    QE was increased by 8-10 times upon the laser 
cleaning. Since laser cleaning was performed on the 
LCLS cathode, routine operations have shown a slow 
improvement of the QE and comparatively rapid 
improvement of the transverse emittance, with a factor-of-
3 QE enhancement over five months and a significant 
emittance improvement over the initial 2-3 weeks 
following cleaning. Currently, the LCLS photocathode 
QE is holding constant at about 1.2104, with a 
normalized injector emittance of about 0.3 µm for a 150-
pC bunch charge. Similar evolution of both QE and 
emittance for two cleaning areas is observed. Discussions 
on the QE evolution and comparison to previous studies 
are presented. With proper procedures, the laser cleaning 
technique appears to be a viable tool to revive LCLS 
photocathodes for x-ray FEL operation. In addition, 
measurements show that LCLS thermal emittances for 
different QE values are close to each other, which 
suggests that cathode surface contamination impacting 
QE may not modify the work function, and thereby the 
thermal emittance.  
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