Paper | Title | Page |
---|---|---|
THPD57 | Application of laser-plasma accelerator beams to Free-Electron Lasers | 658 |
|
||
Funding: This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No.DE-AC02-05CH11231. Plasma waves excited by high-intensity, short-pulse lasers are able to generate hundreds of GV/m accelerating fields, enabling extremely compact accelerators for applications such as radiation generation. Laser-plasma accelerators (LPAs) produce ultrashort (femtosecond), 0.1-1 GeV electron bunches with high-peak (kA) currents and low (sub-micron) normalized transverse emittance, with 6D beam brightness comparable to state-of-the-art RF linac-based sources. FEL applications are presently limited by the longitudinal phase space distribution of the LPA beam. Beam phase space manipulation is considered to enable the application of LPA beams to FELs. LPA beam decompression (such that the energy spread over a coherence length is less than the FEL parameter) is examined as a path toward realizing an LPA-driven VUV FEL. The possibility of using a flat beam, with an energy correlation with transverse position, in a transverse gradient undulator is also explored. Laser-based FEL seeding options for improved coherence are considered. |
||