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PRESENT STATUS

B LCLS -- the brightest source of coherent X-rays.

B peak power and brightness: ten orders of magnitude over
other sources: 1012 coherent photons/pulse at 1.5 A in 70
to 100 fs, and 10! at <10 fs. [P. Emma et al., Nature
Photonics 4, 641 (2010); Y. Ding et al., Part. Acc. Conf.,
300, 2009; Y. Ding et al., Phys. Rev. Lett. 102, 254801
(2009).]

E LCLS: explore many new area of science.

E Imaging on femtosecond time scale of large
macromolecule, in general non-periodic structures, using
the photon coherence to measure a single shot diffraction
pattern before the sample explodes.

® nano-crystals [H.N. Chapman et al., Nature 470, 73

(2011)],
m virus [M.M. Seibert et al., Nature 470, 78 (201 1)] /
Pk N\ ;
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w The key metric is photon power. Ideally ~10 TW

w This gives about 102° W/cm? (with 1 micron focus, assuming beamline and
focusing efficiency)

w Only the first 10 to 30 fs of the pulse usefully contributes

w Wavelength range: 4 keV to 14 keV (to cover elemental edges from S to Se)
w Also: 300-500 eV for water-window imaging of cells, viruses

w Up to 30 keV for time-resolved imaging of nanoparticles

w Repetition rate: As high as possible

w Need to match detector capabilities. 1 kHz repetition could be feasible

»w Bandwidth: As high as possible

w 1 to 10% bandwidth would allow structure determination with about 1%
of the required pulses. i.e. structure determined in <1000 shots
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SCIENCE DRIVE

F The scientific interest of reaching this goal and some
other applications have led us to conduct an in depth study
of the feasibility of a TWs, 10 fs X-ray FEL at 1.5 A, using
the LCLS electron beam parameters. The results of this
study are reported here.
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SATURATED AND TAPERED FELS

F Existing hard X-ray FELSs, like LCLS, operate in SASE
mode, starting from longitudinal density noise in the
electron beam and reaching saturation [R. Bonifacio, C.
Pellegrini, and L.M. Narducci, Opt. Com-mun. 50, 373
(1984); J.B. Murphy and C. Pellegrini, J. Opt. Soc. Am.
B, 2, 259 (1985)].

E Kroll, Morton, and Rosenbluth [N.M. Kroll, P.L. Morton,
and M.N. Rosenbluth, IEEE J. Quantum Electronics, QE-
17, 1436 (1981)] proposed to increase the energy transfer
from the electron to the photon beam beyond saturation
by adjusting the undulator magnetic field to compensate
for the electron energy losses, a “tapered” undulator.

B We use a tapered undulator in combination with self-
seeding to reach the 1 TW level.
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SCALING

A SASE FEL is characterized by the FEL parameter, p

1. the exponential growth, P =P, exp(z/Ls) , where L; ~
A,/ 41p

2. The FEL saturation power P~ p P,.n,

For the LCLS-Il electron beam: /,, ~4 kA, E ~ 14 GeV,
Ppeam™ 96 TW, FEL: p ~ 5 x 10, P, ~30GW<<1TW

B Overall, the peak power at saturation is in the range of
10 to 50 GW for X-ray FELs at saturation.

E The number of coherent photons scales almost linearly
with the pulse duration, and is ~10'% at 100 fs, 101! at
10 fs.
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BEYOND SATURATION

¥ What happens when the FEL saturation is achieved
B Centroid energy loss and energy spread reaches p.

E Exponential growth is no longer possible, but how about
coherent emission? Electron microbunching is fully

developed

E As long as the microbunching can be preserved, coherent
emission will further increase the FEL power

B Maintain resonance condition = tapering the undulator

E Coherent emission into a single FEL mode — more
efficient with seeding scheme -- self-seeding

B Trapping the electrons
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FIRST DEMONSTRATION OF TAPERING AT 30 GHZ*

Power (W)

; The experiment was done
: at LLNL with a seeded, 10
] cm wavelength FEL and a
tapered undulator.
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EXAMPLE OF TAPERING: LCLS

o
3.71F ' ™) e
” [ |
_'-':j Tapered Monochromat;
x.70 g 0] Tapered SASE
L i Untapered SASE
3.69 5 [
g L
2x 011
< 368} 5 _
C -
367 2 imon]
R -
3.66 g R
[l F e
i y 4} N T S
O S0 100 150 200 ) 50 100 150 200
z (meters) z (meters)

Effect of tapering LCLS at 1.5 A,1 nC, 3.4 kA. The saturation
power at 70 m ~20 GW. A 200 m, un-tapered undulator
doubles the power. Tapering for SASE FEL generates about
200 GW. A monochromatic, seeded, FEL brings the power to
380 GW, corresponding to 4 mJ in 10 fs (2 x 10%? photons at 8
keV). The undulator K changes by ~1.5 %.

o~ W.M. Fawley, Z. Huang, K.-J. Kim, and N.A. Vinokurov ,

il Nucl. Instr. And Meth. A 483, 537 (2002)
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OVERVIEW

O
E To overcome the random nature of a SASE FEL, which will

set a limit to the final tapered FEL power, we study seeded
FEL

¥ Producing such pulses from the proposed LCLS-II,
employing a configuration beginning with a SASE amplifier,
followed by a "self-seeding” crystal monochromator, and
finishing with a long tapered undulator.

F Results suggest that TW-level output power at 8 keV is
feasible, with a total undulator length below 200 m including
Interruption.

B We use a 40 pC electron bunch charge, normalized transverse
emittance of 0.3-mm-mrad, peak current of 4 kA, and electron
energy about 14 GeV.
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LCLS-1l BASELINE UNDULATOR STRUCTURE

= - = - = S -
- H - H : H H
E H |- E o1 |- 3 o Can |-

- . | 1 Break: Quad, BPM, phase shifter etc.
Undulator section

Undulator period A, = 3.2 cm,

Undulator length per section L = 3.4 m,

Number of the undulator periods NWIG =L /A, = 106

Break length per sectionL, =1 m

Break length in unit of undulator periods NBREAK =L,/ A, = 32.
Filling factor = NWIG/(NWIG + NBREAK) = 77%.
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SCHEME: WITHIN 200 M TOTAL LENGTH

o
E Start with a SASE FEL, followed by a self-seeding scheme
(Genoli et al.,, 2070), and end up a tapered undulator LW
~1GW 4m >| ~5 MW
30m a \ €~ chicane |<— 160 m —>|
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TAPERING PHYSICS AND MODEL (LONGITUDINAL PLANE)

O
F Resonant condition

Undulator parameter A, is function

2
A=A, 1+ '2\N(Z) of z, after z,, to maintain the
2y°(2) resonant condition.
E Increase of the optical radiation field a (z) follows KMR paper

a,(2) sin(¥.) = -C dA,(2) Y, is the synchronous phase of
a.(z,) Q\m&z the ponderomotive bucket.

S
\ —— Approximately constant.

¥ With the tapering model - ;5 sitive constant coefficient

7) = 5 1—ax(z—z7.)" The order b is not
A2) = Au(2)x (L -ax (2~ 2)) )l necessarily an integer.

E The increase of the optical radiation field follows

| a.(z) Sin(¥ ) = Cxaxnx(z—z,)"" It requires b > 1 for a

increasing electric field.
a\Z J et
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TAPERING PHYSICS AND MODEL (LONGITUDINAL PLANE)

E Three variables in the tapering model

E taper ratio r, closely related to the relative energy loss of the particles
trapped into the ponderomotive bucket, and therefore the gain of the optical
radiation power.

_A\N(Zf)

r=1 =ax(z—-1z,)°

Ay (Z,)

B taper start point z,, empirically it is best to start taper before radiation power
reaching saturation, z, < L., S0 as to avoid saturation region, in which the
radiation exchange energy with electrons with zero net gain.

B Taper profile order b, related to the optical radiation electric field increase
slope.

S @)

a,(Z,)

sin(W,) =Cxaxnx(z-2z,)""

There is an optimal order b, to make the a,(z) increase as rapidly
as possible, while not leading to a significant detrapping.

el Ay
(| NN g \ Y
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OPTIMAL BETA FUNCTION (TRANSVERSE, SECONDARY)
®

E For the tapered undulator, before L., the exponential region, strong
focusing, low beta function helps produce higher power (M. Xie’s
formula).

E After L., theradiation rms size increases along the tapered
undulator due to less effectiveness of the optical guiding. The
requirement is different.

E  We empirically found that a variation in beta function instead of a
constant beta function will help produce higher power. In most cases,
optimal beta function will help extract up to 15% more energy even with
optimal tapering parameters.

E The beta function is varied by linearly changing the quad gradient

K(z) =K(z))x(1-cx(z-1z))| The coefficient c can be
positive or negative value.

el Ay
(| NN g \ Y
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TW FEL @ LCLS-Il NOMINAL CASE

@
|4 Undulator 106 pertods; gap 32 peu{}du
' l83keV-—15A(1364GeV)
E 40-pC charge; 4-kA peak current; 1.3TW |
1.2 10 fs FWHM; 0.3-um emittance i
B Optimized tapering starts at 16 m
1k with 13 % K decreasing from 1 il
to 200 m, close to quadratic taper
- b ~2.03 )
E 0.8r® Und. A, = 3.2cm, 3.4 m ungdulator 1.0 x 104+
] each section, with 1 m bregak; . FWHMBW
~* 0.6} average (g, =20 m
F Longitudinal: close }0 transform
0.4r limited
0.2F
After self-seeding crystal
0 1 [
0 50 100 150 200

z (m)
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TW FEL @ LCLS-Il NOMINAL CASE

E 1.5 A FEL at end of undulator (160 m)

y | E, (red); E, (blue) |

10

o
| 5.0E+06 Vim |/
7N\

I ~ 80 % in fundamental
Mode
B Transverse; M2~ 1.3 )
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SCALING: HIGH PEAK CURRENT

E Taper region: coherent emission
E Power proportional to the square of the peak current

FEL power evoluuon along the undulator

B 0.4-um emittance
Llrp peak current: 4-kA (red) vs 3 kA (blu

0.9+ 165

vs (4/3)% ~1.77

0.8F
0.7F
0.6F

0.5F

doiwd undulator

P(z) . (TW): 3 kA (blue), and 4 kA (red)

. 1 1 1 1
el 0 20 40 60 80 100 120 140 160 180 200

. Z
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SCALING: EMITTANCE

~d
E For 4 kA case, emittance is not so stringent between 0.2
— 0.4 mm-mrad

- FEL power evolution along the undulator

[ ® emittance: 0.2,0.3, 0.4 -um

L3 W peak current: 4-kA

1.6F
1.4+

1.2F .

o o EEn e G wes RS EEE SeE OSSR R el e Gl e

Second l{ndulator

P(z) . (TW): 0.4 um (black), 0.3 um (blue), and 0.2 pm (red)

" «d | A 0 20 40 60 80 100 120 140 160 180 200
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SCALING: EXTEND TO HIGHER ENERGY PHOTON

E For 4 kA, emittance 0.2 mm-mrad; good for 1 A

1.8

1.6

o

(TW): 4 kKA 0.2 pm 0.1 nm (blue) and 0.15 nm (red)
e
o0

L
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FEL power evolution along the undulator

[
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COMPARE WITH THE UNDULATOR WITH ZERO BREAKS

o
F Breaks cause bunching factor reduction, and therefore the
power decrease. For the particle with nonzero

energy deviation relative to the
reference particle, it has an

EE1 L EL R ] ] Break additional path length difference,
AL(S =0)—AL(S = 0)
|—Undulator —
When passing through one break L,, ~ ié‘ —2n1.0
. . 2 r
there is a difference between the path 4

length of the electron and the photon,

For LCLSII baseline,n=5,8is up to
Lb several percent at the end of the
photon Lelectron ~ 2 2 undulator, the path length due to
energy deviation is about one period,
causing phase mixing and bunching

AL =L

To matching the phase of the factor reduction.
resonant particle and radiation field,
L For zero breaks, L, = 0, there is no
C1 A AL tonal e e )
Tl AN 2’ w '
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POWER VS. FILLING FACTOR (CHANGE NBREAK)

Based on Genesis time-independent simulation.
Normalized power = P / P(100% filling factor).

LCLSII baseline,

]::

NWIG = 106,
0ol * *  Filling factor 1 NBREAK = 32,
' u| O Normalized power| __—— Filling factor 77%
0.8 P=277TW
P = 0.57

norm

o
~
I

LCLSII baseline,

Filling factor & normalized power
o
(@]

05 NWIG = 106,
NBREAK = 20,
04r Reduce break length, q | Ell_llgg4f5a_lcz\t/3r 84%
0.3 one can obtain larger o ] B - 0.71
' filling factor and & norm — ¥ .
- higher power. . | Increase ~ 25%.
0 20 40 60 80
Number of undulator periods in the gap
v
o b N
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SENSITIVITY TO INPUT SEED POWER

The seed power should be larger than a few MWs

2
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STATISTICS OF A TW FEL POWER

o
The stgtistical fluctuation increases, but not dramatically

0 | | 1 1 ] | p _;-;:Gif_: ué o,
' o | 0 20 40 60 80 100 120 140 160 £ 255

D Ll
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SENSITIVITY TO UNDULATOR PARAMETER ERROR

o
The maximum power of the tapered undulator is more sensitive to

the undulator parameter errors than saturation power.

14

Average lpower + _ -
1ol reduction ~3.5% T + |
\ + % T
T 4% 6 % :
T~ 7%

1 Ll

[
L Ll
LI '

081
x

PO 5, /K = 0.01%,
average power
04r reduction ~15%

Ll LIl

T
Ll
I

Normalized power

40 % L T .

SO HE

80%

021
Red : Maximum power with tapered undulator. _
.1 Blue: Saturation power with uptapered yndulator. ;

0 1 2 3 - 5 5]

1 Undulator parameter error . 10-4
-—
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HELICAL UNDULATOR ENHANCE PERFORMANCE

B Shorten the system, higher FEL power, more

than JJ?
5
45
Planar undulator :
4r Helical undulator Helical
35

Power (TW)
ka
[ o (L)

—
o1
T

—
T

Planar

05+
0 | | |
0 50 100 150 200
ol A__ s{m] LR
P N\ O w4
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HIGHER ENERGY PHOTON: HARMONICS IN A TW FEL

B Since the bunching is well established all along the long
tapered undulator, harmonics can be substantial as well.

B LCLS-II type undulator and electron bunch

E In the following, we are showing a time-independent
simulation
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HARMONICS IN A TW FEL: BUNCHING

E The harmonic bunching is quite high as well - After-
burner type radiator for low energy machine

Undulator 111 penods; gap 9 periods
T T

07

0.6F
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.4l 1| Second harm. (blue);
Third harm. (green)

(z) (areen) (TW)

04F
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HARMONICS IN A TW FEL: POWER

B The 3'9 harmonic (25 keV) power is quite high as well >
approaching 10 % (~ TW); the 5 (> 40 keV) power is
guite high as well - approaching 0.3 % (> 30 GW)

Y dlla |

1

P (z) (red), P_(z) (blue), P_(z) (green) (TW)

l{’PL

Undulator 111 penods. gap Y periods

T T T

T

S0 100 150
Z (m)

!
200
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| Fundamental (red);

Second harm. (blue);
Third harm. (green)
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HARMONICS IN A TW FEL: FIELD PROFILE

O
B 39 harmonic at end of undulator
y | E, (red); E, (blue) |
1 14+06 vim |,
.-{f \\
;‘J \
J !Jlr:l; | I\‘-.

/I I\\

\

f \"

A\ | N

y y (red); x (blue) |
VR W /FJ
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SIDE-BAND INSTABILITY, TAPERED FEL SATURATION

E Even though the strong seed well dominates over the shot
noise in the electron bunch, the long (160 m) undulator
can still amplify the shot noise and excite side-band
Instability [Z. Huang and K.-J. Kim, Nucl. Instrum.
Methods A 483, 504 (2002)].

B the SASE component in the electron bunch and the
residual enhanced SASE components in a self-seeding
scheme can then couple and excite such a side-band
Instability, which together with other effects leads to
the saturation as seen around 160 m
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SATURATION OF TAPERED FEL

B Steady state (red), time-dependent with “natural” SASE
(blue), and “enhanced” noise Iin start-to-end (green)

; Undulator 106 periods; gap 32 periods
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STARTUP REGION

E After self-seeding chicane, the density bunch factor: 0.1
- 0.008, but also residual energy modulation -
enhanced noise

Undulator 106 periods: gap 32 periods

b}

10" ¢

| Steady state (red);
With SASE (blue);
S-2-E (green)

[—
O.

"
(48]
T

[a—
o

E. A. Schneidmiller and M. V. Yurkov, PR
' ST Accel. Beams 13, 110701 (2010).




NOISE EXCITE SIDE-BAND INSTABILITY

B Spectrum evolution @ 5 m

With SASE(red)
S-2-E(blue);

Undulator 106 periods: gap 32 periods

-nn-u

m
:
o
m
i
=

0.1515

0.1505 0.151

0.15
A (nm)

lps
= Ty

W
o
—

0.149 0.1495

o
<o

|

(o) (anjq) g (Pan’(Od

W
S
y—

FEL 2011, J. Wu, SLAC

bl



NOISE EXCITE SIDE-BAND INSTABILITY

B Spectrum evolution @ 160 m

1013

P(JL)I deal (red), P(Jk)SZE (blue) (a.u.)

10 1 1 1 1 1
0.149 0.1495 0.15 0.1505 0.151 0.1515
A (nm)
ol A
o e W

NATIONAL ACCE ERATOR LABORATORY FEL 2011, J. Wu, SLAC

With SASE(red);
' S-2-E(blue);




CONCLUSIONS

v' A1.5 ATW FEL is feasible

v High power, hundreds GW at 3rd
harmonic, tens GW at 5" harmonic,
allowing to reach higher energy photon.

v This novel light source would open new
science capabilities for coherent
diffraction imaging and nonlinear science.

? Towards 10 TW: helical undulator, high

peak current, short interruption, fresh
bunch...
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