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FIG. 1. Conceptual scheme of an LSC amplifier.
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~m | micro-bunching under the effects of Longitudinal Space-
| Charge is cruciall

Subject of this work is the theory longitudinal space- &%
charge oscillations in a relativistic electron beam.
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Section A

Cold laminar beam approximation, 3-D effects
due to finite size of the beam included

rp is a correction factor <1 that tends to 1 if

>>y}\,

r.beam

Novelty of this work is the fully kinetic treatment in 6-D phase space
with inclusion of:

-Emittance

-Betatron Motion

-Energy Spread

-Edge Effects
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Novelty of this work is the fully kinetic treatment in 6-D phase space

WlthllnCIUS|0n of: Despite the radically different physical scenario, we used the mathematical
-Emittance methods developed for 3-D FEL theory by Kim, Yu, Xie et al.

-Betatron Motion
-Energy Spread Particularly indebted to the work of Ming Xie for the solution techniques
-Edge Effects (variational and matrix methods) and IVP.




6-DIMENSIONAL DISPERSION
RELATION FOR SPACE-CHARGE
MODES
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-Gaussian beam matched to a uniform 2“22 202 22 —27;’;2
focusing channel with kg/c. fo=mnge —F T8 "/(2%)3/2a%k%an

-Work in the longitudinal spatial
frequency domain.
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6-DIMENSIONAL DISPERSION
RELATION FOR SPACE-CHARGE

MODES

-Gaussian beam matched to a uniform
focusing channel with kg/c.

-Work in the longitudinal spatial
frequency domain.
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Coupled Poisson/Vlasov Equations:




DIMENSIONLESS SCALING

PARAMETERS

Energy spread parameter

Ov,Tp
A
Longitudinal displacement due to

energy spread in a 1-d plasma period /
microbunching wavelength.

Emittance parameter

2 O-ngp
Longitudinal displacement due to
transverse emittance in a 1-D plasma
period / microbunching wavelength.

Analogous to energy spread and emittance parameters in

3-D FEL theory:

Cold beam limit: Ky, Kg <<1

3-D parameter

Transverse beam size/ microbunching
wavelength in the rest frame.

Focusing parameter
Kg = kgc/wp

Betatron frequency/1-D plasma
frequency

Analogous to diffraction parameter in 3-D FEL theory:

edge effects are negligible if D>>1

Unlike 3-D FEL theory, the normalized betatron frequency
is independent of the other scaling parameters.

Transverse motion negligible if: K/}<<1
(laminar beam limit)




ONE DIMENSIONAL LIMIT

The one dimensional limit is approached by taking:
D>>1, Ky<< 1, K, << 1

Modes are fully degenerate (all eigenmodes have the same eigenvalue) and
the dispersion relation reduces to the well known 1-D plasma oscillation
dispersion relation for a warm plasma (Landau/Jackson):

2K27 \V2K,)
i
Z(¢) = ZiB_CZ/ e~ dx
— 00

In the 1-D limit for a cold beam (D>>7, K}5 <<1, K,<<1and
K, << 1) we get the well established result:

Q%=1
or.
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Note that transverse focusing breaks the
degeneracy of the plasma eigenmodes in the
D>>1 limit (infinite beam limit).

Novel result from kinetic analysis in 6-D phase-
space.

In the 1-D limit for a cold beam (D>>7, K;<<1, K, << 1 and

K, << 1) we get the well established result:

Q%=1
or.




GEOMETRICAL EFFECTS: PLASMA
REDUCTION FACTOR FOR A COLD
BEAM

10 Assume Cold beam limit: K, K, << 1.
In the “infinite beam limit” (or short wavelength limit)
D>>1
-1 .
G 10} __K<<1 (variational) | O=1 for a laminar beam (K <<1)
0=0.756 for high betatron frequency(K>>1)
_KB>>1
- Kg>>1 (variational) In the “small beam limit” (or long wavelength limit)
D<<1
-2
107 - — 1
10 10 D 10 10 QO=2D regardless of betatron motion

Reduction due to geometry of the microbunched beam in
the rest frame. For for small D you have: y1>>c,

Handy variational formula for laminar beam limit: I
Also: for small D an electron oscillating transversely

_ samples no field variation since the field extends well
Q= 2D/(1 +2D) outside of the beam thus betatron motion makes no
difference!




EMITTANCE AND ENERGY SPREAD

EFFECTS —

D=1 K, >>1
2.5 25
2 2
1.5 1.5
1 1
0.5 0.5

Longitudinal thermal motion induced by energy
spread and transverse emittance gives rise to an
exponential damping process (Landau damping).

Response is different for forward/backward
propagating waves (in beam coordinate system).

Emittance induced velocity spread is always
negative resulting in a stronger landau damping of
backward propagating modes!

Emittance induced Landau damping sets the optimum
beam size for space-charge experiments since:

O)p~1/GX and KS”"]/GX

Increasing the density by focusing comes at the
expense of increasing longitudinal velocity spread!

Important for longitudinal
space-charge amplification!




LONGITUDINAL SPACE-CHARGE

AMPLIFIER

Initial value problem in 6-D phase space solved in
terms of bi-orthogonal mode expansion

et (5 L) e—
filr) = frem e
1T ; ) <fTTL7fn>

This formula gives the evolution of the initial
perturbation under the effect of LSC.
Dispersion in magnetic chicane results in a factor

f, and f.,T are the eigenmodes and the adjoint
eigenmodes of the 6-D phase space operator:

Exp(-ikRsg)
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t € O jenr ey s = 1
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yme® o kg
Focusing Magnetic
Channel Chicane Undulator
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For a cold beam the gain due to space-charge starting from a density modulation is

N (szng56)

R .
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LONGITUDINAL SPACE-CHARGE

AMPLIFIER

Initial value problem in 6-D phase space solved in
terms of bi-orthogonal mode expansion
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This formula gives the evolution of the initial
perturbation under the effect of LSC.
Dispersion in magnetic chicane results in a factor

f, and f.,T are the eigenmodes and the adjoint
eigenmodes of the 6-D phase space operator:

0
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Focusing Magnetic
Channel Chicane Undulator
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Time derivative of the density
modulation at the drift exit!

Up to the coupling coefficient I'~1 the formula can be interpreted as:

-a fraction of plasma oscillation of length L
-followed by a space-charge free drift of length y?R.
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Time derivative of the density
modulation at the drift exit!

Preted as:

Gain Maximized at Va4 plasma
oscillation!




3-D AND THERMAL EFFECTS IN THE
LONGITUDINAL SPACE-CHARGE
AMPLIFIER

P Ld z)\p3-D/4

10° A4 :
Z%‘i?maéig”ﬂﬁ‘;;yw Example: compressed NLCTA beam
b | oenic = 500 A
£ -e=3 x 10°° mm mrad (slice emittance)
I -y= 240 (E = 120 MeV)
g -1 =800 nm
[e] 10' 'Espread =5 x 10°
o
'Ld = 1 m
10° |
107 = H 1
10 10 10 10
p
1-D Plasma frequency scales like: Fpr the cold beam case, gain incr_eases
with stronger focusing until the drift
length is equal to V4 plasma period.
a)p.. 1/O-X~ 1/’31/2 g q 4p P

(kzonRsa)® L
= _ = 2 _+ “p " _d
Emittance parameter scales like: i = Ty Hsee P b sinapfly =

K ~1/c,~1/8"2

Stronger focusing enhances the collective response but
increases thermal effects due to emittance!

Gain has an optimum when the two effects balance each
other!




HIGHER ORDER MODES AND

PLASMA-BETATRON B

Azimuthal mode expansion of dispersion relation
= im@
- Em(R)e

+ cold beam limit:
1

- o o / —u— /1y
5@ = gy | @) e, @),

f
Qz Q‘Z

Tu(Q, Q") = (1 rp] D L (Q—Q) Lo (QTQ) m

For KB>>1 we look for solutions in the form: Q=hKB + 80O with ESQ<<KE

For h#0 response is a beat between betatron and plasma oscillation.

A mTTT AXTTCY
KT

Kﬁ T=n/4

Evolution of an even/odd m charge
perturbation under transverse
focusing composed of even/odd
harmonics of betatron oscillation.
(example: m=1)
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HIGHER ORDER MODES AND
PLASMA-BETATRON BE* ™" 77 5w

Azimuthal mode expansion of dispersion relation

Sum performed over even/odd
harmonics for even/odd m
Dispersion relation highly peaked

Ez = Em(R)eimH

+ cold beam limit: around Q=nK; (cold beam limit)

n — 1 o ! —92—*;92“ / /
5@ = gy | @@y e, @)@l

(@, Q) = %Zu (Qf') - (

For Kz>>1 we look for solutions in the form: Q=hK; £5Q with 8Q<<Kj
For h#0 response is a beat between betatron and plasma oscillation.

21/0Q
1 o
08 | AN R
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we ol || e AT -
n -“'-M"ZJT/ b | \\' i n | \| for an emittance
-0.2F ;A \poo .
\\‘Iﬂf VMH\M ‘I‘\H\MJ “L dominated beam
04t ' C
04 ||\ /. H H |- |‘\ |‘\ Vo I odd m modes only
ol exist as
08|/ J / \ / '\
08|, ‘U' ! A L‘ \ beatwaves...
9 i . SV ) o

0 5 10 15 20 25 30

Evolution of an even/odd m charge
perturbation under transverse
focusing composed of even/odd
harmonics of betatron oscillation.
(example: m=1)




HIGHER ORDER MODES IN LSCA

CONSEQUENCE: This effect can be empolyed to either
suppression of higher order modes suppress or amplify higher order
due to transverse focusing. modes in a LSCA
100 —m=0
—m=1
=
1]
s
= (]
C 107 s
o
10_2 0 0?2 0j4 0:6 |_d 018 1 1:2 1.4
107 10° 10’ )
D Gy = (%’}’ZRgﬁeTaF()QQ sin (QU%Ld)>
The reduced eigenvalue 0Q) describes the
collective physics of the system and it's w x3 _ w w 2
independent Of K[3 Gp=1 = (FP’YZRSG'S 2 ['16€2 sin ((591de) cos (Kﬁ?pLd))




HIGHER ORDER MODES IN LSCA

CONSEQUENCE: This effect can be employed to either
suppression of higher order modes suppress or amplify higher order

due to transverse focusing. modes in a LSCA

100 | 7000 —
—m=1
Ld <<Ay/4  Gyoo/Gpoy~(/6Q2)*
Increased transverse coherence
Qoo/
107} WP
o
2000
1000}
2 0.2 4 0.6 0.8 1 12 1.4
10— "5 . Ld
10 10 10 . 5
D Gm—o = (ﬂ’YZRSGETaFOQU sin (Qo—pLd)>
C C

The reduced eigenvalue 0Q describes the

collective physics of the system and it’s w K2 _ w w 2

independent of K, Gy = (?pyzﬂsﬁe T80 sin (mlde) cos (Kﬁde))




HIGHER ORDER MODES IN LSCA

CONSEQUENCE: This effect can be employed to either
suppression of higher order modes suppress or amplify higher order
due to transverse focusing. modes in a LSCA Ld=2)2  Gpg<<Gpey
10° ‘ 4558 B Transverse mode selection!
6000] (Generation of Orbital Angular
Momentum Modes in FELSs)
5000
j=
(5 4000
C 107"} %3000
o
2000
1000
0 . J k . .
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107 5 1 Ld U
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The reduced eigenvalue 52 describes the
collective physics of the system and it's w 2 w w 2
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CONCLUSIONS

An analytical model for longitudinal space-charge waves was developed which
includes e-spread, emittance, transverse focusing and edge effects
(corresponding to 4 dimensionless scaling parameters).

Our analysis 1s based on a modal expansion in 6-D phase space and employs
techniques developed for 3-D FEL theory.

The kinetic analysis reveals interesting physical effects like:
1) emittance induced anisotropy of LSC modes
2) focusing induced degeneracy breaking
3) plasma-betatron beatwaves.

Solution of the initial value problem allows for a 3-D kinetic description of the
concept of LSCA proposed by Schneidmiller et al.

This model has interesting applications in the optimization of space-charge
based microbunching experiments.

Details of this derivation to be published on Physics of Plasmas “Three
dimensional analysis of longitudinal plasma oscillations in a thermal
relativistic electron beam” (tentatively scheduled for publication in the
september issue) and two subsequent papers yet to be submitted.
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