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Overview 
 A. Pines and D. Bohm (Phys. Rev., 85, 338 (1952)) showed that 

fluctuations in a non-relativistic plasma exhibit both individual particle 
behavior as well as collective plasma oscillations, and the collective 
behavior dominates for fluctuations of wavenumber k, if kλD <<1, 
where λD = “Debye length” = mean particle velocity/ plasma frequency 

 Particles separated more than the Debye length interact only via 
collective forces. 

 In microwave devices, the collective plasma oscillation has been 
utilized for shot noise reduction 

 We study the validity limits of a similar noise reduction technique 
proposed for high-gain FELs*, finding  
– The presence of the individual particle behavior not subject to 

collective control 
– 1/kλD scaling of the momentum noise 
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* A.Gover and E. Dyunin, Phys. Rev. Letts., 102, 154801 (2009); IEEE-JQE, 46, 1511, 2010 



Variables and Equations 
 
 Klimontovich distribution function: 

 
 

 Variables:  
– “Time” variable: z 
– Position: 
– Momentum: 

 Klimontovich (Vlasov) equation: 
 

 
 Gauss (Poisson) equation for electric field E 
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Our approach* 
 Decompose f into smooth background and the rest: 

– 𝑓 = 𝑓0 + 𝑓 
– 𝑓0: smooth background, zeroth order part 
 
– 𝑓 : high frequency part, including particle discreteness, regarded 

to be small, first order term 
 Smooth background does not produce electric field treat E as the 

first order quantity 
 Introduce Fourier transform 

 
 

 Do Laplace transform in z, turn to algebraic equation containing the 
initial function 𝑓𝑘(∆𝛽; 𝑧 = 0), solve the equation and perform the 
inverse Laplace transform*. 
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* Similar to the SASE study, KJK, Nucl. Instr. Methods, A250, 396 (1986) 



The solution for the bunching factor: 
 

 Bunching factor: 𝑏𝑘 𝑧 = 1
𝑁𝑒

∫ 𝑑𝜁𝜁Δ𝛽𝑒−𝑖𝑖𝑖𝑓 𝜁, Δ𝛽; 𝑧 = 1
𝑁𝑒

∑ 𝑒−𝑖𝑖𝜁𝑗(𝑧)
𝑗  

 Solution:  𝑏𝑘(𝑧)= 𝑖
2𝜋𝑁𝑒

∫ 𝑑𝜔 𝑒−𝑖𝑖𝑖

𝜀(𝑘,𝜔)
∑ 𝑒−𝑖𝑖𝜁0

𝑗

𝜔−𝑘∆𝛽0
𝑗

𝑗𝑳  

where the “dielectric function” 
 
 
 
 The Landau-contour L is above all the singularities in the integrand 
 There are two classes of poles 

– Collective:  𝝎 = 𝝎𝒒;  𝜺 𝒌, 𝝎𝒒 = 𝟎 
– Individual:  𝝎 = 𝒌∆𝜷𝟎

𝒊  , i = 1,2,…Ne 
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The collective and individual parts 
 Accordingly we have the decomposition:𝑏𝑘 z = 𝑏𝑘

𝐶 𝑧 + 𝑏𝑘
𝐼(𝑧), 

 Collective part:  𝒃𝒌
𝑪 𝒛 = ∑ 𝒆−𝒊𝝎𝒒𝒛

𝒒
𝟏

𝜺′(𝒌,𝝎𝒒)
𝟏

𝑵𝒆
∑ 𝒆−𝒊𝒊𝜻𝒊

𝟎

𝝎𝒒−𝒌𝒌𝜷𝟎
𝒊

𝒊  

 Individual part:    𝒃𝒌
𝑰 𝒛 = 𝟏

𝑵𝒆
∑ 𝒆−𝒊𝒊(𝜻𝒊

𝟎+𝜟𝜷𝟎
𝒊𝒛�

𝜺(𝒌,𝒌𝒌𝜷𝟎
𝒊)𝒊  

 
 This is, as far as we know, the first precise formulation of the 

decomposition of plasma fluctuations, first introduced by 
Bohm and Pines in 1952 
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Incoherent fluctuations due to individual motion 

 𝒃𝒌
𝑰 𝒛 = 𝟏

𝑵𝒆
∑ 𝒆−𝒊𝒊(𝜻𝒊

𝟎+𝜟𝜷𝟎
𝒊𝒛�

𝜺(𝒌,𝒌𝒌𝜷𝟎
𝒊)𝒊  

 This corresponds to free motion of Debye-shielded particles ( See, for 
example, Nicholson) 

 The magnitude of the incoherent term: 

 |𝑏𝑘
𝐼 |2 = 𝟏

𝑁𝑒
2 ∑ 1

|𝜀(𝑘,𝑘𝑘𝛽𝑗
0|2𝒋 + 𝟏

𝑁𝑒
2 ∑ 𝑒−𝑖𝑖(𝜁𝑗

0+𝛥𝛽𝑗
0𝑧−𝜁𝑗

0−𝛥𝛽𝑚
0 𝑧�

𝜀(𝑘,𝑘𝑘𝛽𝑗
0)𝜀∗(𝑘,𝑘𝑘𝛽𝑚�𝒋≠𝒎  

 The second term vanishes invoking random phase approximation and 
the first term can be calculated exactly* for a Gaussian g(∆β):  

     |𝒃𝒌
𝑰 |𝟐 = 𝟏

𝑵𝒆
�𝒅𝒅𝒅  𝒈(𝜟𝜟)

|𝜺(𝒌,𝒌𝒌𝒌)|𝟐 = 𝟏
𝑵𝒆

𝒌𝝀𝑫
𝟐

𝟏+ 𝒌𝝀𝑫 𝟐 , 𝝀𝑫 = 𝝈𝜟𝜟/𝜴𝒑 

 The part is not subject to plasma oscillation, and is 
large when 𝒌𝝀𝑫 ≥ 𝟏 
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*N. Rostoker,  Nucl. Fusion, 1, 101 (1961) 



 Assume kλD <<1   𝜀(𝑘, 𝜔) ≈ 1 − 𝛺𝑃
2 𝜔2⁄  .  Then fluctuation is 

determined by the collective plasma oscillation. Otherwise, the plasma 
oscillation is poorly defined due to Landau damping* 

   𝑏𝑘
𝐶 𝑧 = 1

2𝑁𝑒
� 𝑒−𝑖𝑖𝜁𝑗

0

𝑗
𝑒−𝑖𝛺𝑃𝑧 𝛺𝑃

𝛺𝑃−𝑘𝑘𝛽𝑗
+ 𝑒𝑖𝛺𝑃𝑧 𝛺𝑃

𝛺𝑃+𝑘𝑘𝛽𝑗
 

              ≈ 𝑏𝑘(0)cos(𝛺𝑃𝑧) − 𝑖 𝑘
𝛺𝑃

𝑝𝑘(0)sin(𝛺𝑃𝑧�  

 We also find the “collective momentum” 

 𝑝𝑘
𝐶 𝑧 = 𝟏

𝑁𝑒
� 𝑑𝑑𝑑 𝑓𝑘 (𝛥𝛥, 𝑧) = 1

𝑁𝑒
� 𝛥𝛽𝑗

𝑗
𝑒−𝑖𝑖𝜁𝑗(𝑧�   

                 ≈ −𝑖 𝛺𝑃
𝑘

𝑏𝑘(0)sin(𝛺𝑃𝑧) + 𝑝𝑘(0)cos(𝛺𝑃𝑧�  

These equations describe collective  plasma oscillation 

The collective part 
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See, for example, S. Ichimaru, Basic Principles of Plasma 
Physics, The Benjamin/Cummins Pub. Co. (1973) 



The values of bunching factor and the 
collective momentum  
 For z = 0 

|𝑏𝑘
𝐶 0 | ∼ 1 𝑁𝑒⁄   ,  |𝑏𝑘

𝐶 0 |~ 𝜎𝛥𝛥 𝑁𝑒⁄   
 For z = Λp/4 = π/2Ωp ( one quarter of the plasma oscillation period) 

 
|𝑏𝑘

𝐶 𝛬𝑝 4⁄ | ∼ 𝑘 𝜆𝐷 𝑁𝑒⁄   ,  |𝑝𝑘
𝐶 𝛬𝑝 4⁄ | ∼ 𝛺𝑝 𝑘⁄ 𝑁𝑒    

 
 Note that 

– |𝑏𝑘(𝛬𝑝 4⁄ �|
|𝑏𝑘(0)|

= 𝑘𝜆𝐷 :  The “shot” noise decreases as 𝑘𝜆𝐷 

– |𝑝𝑘(𝛬𝑝 4⁄ �|
|𝑝𝑘(0)|

= 1
𝑘𝜆𝐷

   : The momentum noise increases as 1/ 𝑘𝜆𝐷 
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Effective input noise for high-gain FELs 
 1-D formula for effective input noise (KJK, 1986) is proportional to 

                            𝑠𝑘(𝑧0) = | ∑ 𝑒−𝑖𝑖𝜁𝑗(𝑧0�

𝜇−𝜸𝟐∆𝜷𝑗 𝜌⁄
𝑵𝒆
𝒋=𝟏 |2 

  

 Which may be expanded by assuming  
𝛾2∆𝛽

𝜌
≡ ∆𝛾

𝛾
1
𝜌

< 1: 

𝑠𝑘(𝑧0) ≈ 𝑵𝒆
2|𝑏𝑘(𝑧0) + 𝜇 𝜌⁄ 𝛾2𝑝𝑘(𝑧0)|2 

 
– Here µ is the solution of the dispersion relation( 𝜇 = 1 for the cold 

beam case) 
–  ρ is the FEL strength parameter 
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Reducing the input noise for high-gain FELs via 
collective plasma oscillation, when 𝒌𝝀𝑫 <<1 
 Using the values of the bk and pk, we obtain 

– 𝒔𝒌(𝟎) ∼ 𝑵𝒆 𝟏 + | 𝝁∆𝜸/𝜸
𝝆

|𝟐  

– 𝒔𝒌(𝜦𝒑 𝟒⁄ ) ∼ 𝑵𝒆 𝒌𝝀𝑫
𝟐 + |𝝁 ∆𝜸/𝜸

𝝆
𝟏

𝒌𝝀𝑫
|𝟐  

 The red terms are from the “shot” noise which is reduced after a 
quarter plasma period 

 The “momentum” noise term for z =Λp/4 scales as 1/k𝜆𝐷. Since 
FELs work well if ∆𝛾

𝜌𝜌
~0.1,  this term could become larger than 1 if 

k𝜆𝐷< 0.1  
 It seems that the input SASE noise reduction via plasma 

oscillation is difficult even for the case k𝜆𝐷< 0.1  
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Numerical example for  the LCLS case* 
 

  LCLS  LCLS injector 
Energy [GeV] 14.35 GeV (γ = 28×103) 135×10-3 
Peak current [A] 3.4 kA 40 
Energy spread (rms) 1×10-4 2 10-5 
Beam size (rms) [microns] 7.7 67.3  
Modulation wavelength [Å] 1.5 1×10-4 
FEL parameter (ρ) 5×10-4 5.5×10-3  
kλD 1.13 0.85×10-2 
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(The FEL for the LCLS injector  used K=1.41, λu=7.3 cm to obtain  λ=1 µ  
with 135 MeV) 
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