

Collective versus Individual Aspects in FEL Electron Beam Fluctuations

Kwang-Je Kim and Ryan Lindberg August 22, 26, 2011 International FEL Conference Shanghai, China

Overview

- A. Pines and D. Bohm (Phys. Rev., 85, 338 (1952)) showed that fluctuations in a non-relativistic plasma exhibit both individual particle behavior as well as collective plasma oscillations, and the collective behavior dominates for fluctuations of wavenumber k, if $k\lambda_D <<1$, where $\lambda_D =$ "Debye length" = mean particle velocity/ plasma frequency
- → Particles separated more than the Debye length interact only via collective forces.
- In microwave devices, the collective plasma oscillation has been utilized for shot noise reduction
- We study the validity limits of a similar noise reduction technique proposed for high-gain FELs*, finding
 - The presence of the individual particle behavior not subject to collective control
 - $1/k\lambda_D$ scaling of the momentum noise
- * A.Gover and E. Dyunin, Phys. Rev. Letts., 102, 154801 (2009); IEEE-JQE, 46, 1511, 2010

Variables and Equations

Klimontovich distribution function:

$$f(\zeta, \Delta\beta, z) = \sum_{i} \delta(\zeta - \zeta_{i}(z)) \delta(\Delta\beta - \Delta\beta_{i}(z))$$

- Variables:
 - "Time" variable: z
 - Position: $\zeta = z v_0 t$

- Momentum:
$$\Delta\beta \equiv d\zeta / dz = 1 - \beta_0 / \beta = (\Delta\gamma / \gamma)(1 / \beta\gamma^2)$$

Klimontovich (Vlasov) equation:

$$\frac{\partial f}{\partial z} + \Delta \beta \frac{\partial f}{\partial \zeta} + \frac{eE}{mc\beta\gamma^3} \frac{\partial f}{\partial \Delta \beta} = 0$$

Gauss (Poisson) equation for electric field E

$$\frac{\partial E}{\partial z} + \frac{\partial E}{\partial \zeta} = \frac{e}{\varepsilon_0 \Sigma_A} \int d\Delta \beta f$$

Our approach*

- Decompose *f* into smooth background and the rest:
 - $f = f_0 + \hat{f}$
 - f_0 : smooth background, zeroth order part
 - $f_0(\Delta\beta) = n_0 g(\Delta\beta) \qquad g(\Delta\beta) = \exp(-\Delta\beta^2 / 2\sigma_{\Delta\beta}^2) / \sqrt{2\pi}\sigma_{\Delta\beta}$
 - \hat{f} : high frequency part, including particle discreteness, regarded to be small, first order term
- Smooth background does not produce electric field → treat E as the first order quantity
- Introduce Fourier transform

$$\hat{f}_{k}(\Delta\beta;z) = \int_{-\infty}^{\infty} d\zeta e^{-ik\zeta} \hat{f}(\zeta,\Delta\beta,z), \quad E_{k}(z) = \int_{-\infty}^{\infty} d\zeta e^{-ik\zeta} E(\zeta,z)$$

• Do Laplace transform in z, turn to algebraic equation containing the initial function $\hat{f}_k(\Delta\beta; z = 0)$, solve the equation and perform the inverse Laplace transform^{*}.

* Similar to the SASE study, KJK, Nucl. Instr. Methods, A250, 396 (1986)

The solution for the bunching factor:

- Bunching factor: $b_k(z) = \frac{1}{N_e} \int d\zeta d\Delta\beta e^{-ik\zeta} \hat{f}(\zeta, \Delta\beta; z) = \frac{1}{N_e} \sum_j e^{-ik\zeta_j(z)}$
- Solution: $b_k(z) = \frac{i}{2\pi N_e} \int_{\mathbf{L}} d\omega \frac{e^{-i\omega z}}{\varepsilon(k,\omega)} \sum_j \frac{e^{-ik\zeta^0 j}}{\omega k\Delta\beta^0 j}$

where the "dielectric function"

$$\varepsilon(k,\omega) = 1 + \Omega_P^2 \int d\Delta\beta \frac{g'(\Delta\beta)}{\omega - k\Delta\beta}$$
$$\Omega_P = \sqrt{e^2 n_0 / \varepsilon_0 m \beta \gamma^3} \text{ (Plasma frequency)}$$

- The Landau-contour L is above all the singularities in the integrand
- There are two classes of poles
 - Collective: $\boldsymbol{\omega} = \boldsymbol{\omega}_q$; $\boldsymbol{\varepsilon}(\boldsymbol{k}, \boldsymbol{\omega}_q) = \mathbf{0}$
 - Individual: $\boldsymbol{\omega} = \boldsymbol{k} \Delta \boldsymbol{\beta}^{0}_{i}$, $i = 1, 2, ..., N_{e}$

The collective and individual parts

- Accordingly we have the decomposition: $b_k(z) = b_k^{C}(z) + b_k^{I}(z)$,
- Collective part: $b_k^{\ C}(z) = \sum_q e^{-i\omega_q z} \frac{1}{\varepsilon'(k,\omega_q)} \frac{1}{N_e} \sum_i \frac{e^{-ik\zeta_i^0}}{\omega_q k\Delta\beta_i^0}$

• Individual part:
$$b_k^{I}(z) = \frac{1}{N_e} \sum_i \frac{e^{-ik(\zeta_i^0 + \Delta \beta^0_i z)}}{\epsilon(k, k \Delta \beta^0_i)}$$

 This is, as far as we know, the first precise formulation of the decomposition of plasma fluctuations, first introduced by Bohm and Pines in 1952

Incoherent fluctuations due to individual motion

•
$$b_k^{I}(z) = \frac{1}{N_e} \sum_i \frac{e^{-ik(\zeta_i^0 + \Delta \beta^0_i z)}}{\varepsilon(k, k \Delta \beta^0_i)}$$

- This corresponds to free motion of Debye-shielded particles (See, for example, Nicholson)
- The magnitude of the incoherent term:

•
$$\langle |b_k^I|^2 \rangle = \left\langle \frac{1}{N_e^2} \sum_j \frac{1}{|\varepsilon(k,k\Delta\beta_j^0)|^2} \right\rangle + \left\langle \frac{1}{N_e^2} \sum_{j \neq m} \frac{e^{-ik(\zeta_j^0 + \Delta\beta_j^0 z - \zeta_j^0 - \Delta\beta_m^0 z)}}{\varepsilon(k,k\Delta\beta_j^0)\varepsilon^*(k,k\Delta\beta_m)} \right\rangle$$

• The second term vanishes invoking random phase approximation and the first term can be calculated exactly* for a Gaussian $g(\Delta\beta)$:

$$\langle |b_k^I|^2 \rangle = \frac{1}{N_e} \int d\Delta\beta \, \frac{g(\Delta\beta)}{|\varepsilon(k,k\Delta\beta)|^2} = \frac{1}{N_e} \frac{(k\lambda_D)^2}{1+(k\lambda_D)^2} \,, \, \lambda_D = \sigma_{\Delta\beta}/\Omega_p$$

• The part is not subject to plasma oscillation, and is large when $k\lambda_D \ge 1$

*N. Rostoker, Nucl. Fusion, **1**, 101 (1961)

collective and individual FEL2011

The collective part

• Assume $k\lambda_D <<1 \rightarrow \varepsilon(k,\omega) \approx 1 - \Omega_P^2/\omega^2$. Then fluctuation is determined by the collective plasma oscillation. Otherwise, the plasma oscillation is poorly defined due to Landau damping*

$$\Rightarrow b_k^C(z) = \frac{1}{2N_e} \sum_j e^{-ik\zeta_j^0} \left(e^{-i\Omega_P z} \frac{\Omega_P}{\Omega_P - k\Delta\beta_j} + e^{i\Omega_P z} \frac{\Omega_P}{\Omega_P + k\Delta\beta_j} \right)$$

$$\approx b_k(0) \cos(\Omega_P z) - i \frac{k}{\Omega_P} p_k(0) \sin(\Omega_P z)$$

We also find the "collective momentum"

$$p_{k}^{C}(z) = \frac{1}{N_{e}} \int d\Delta\beta \hat{f}_{k} \left(\Delta\beta, z\right) = \frac{1}{N_{e}} \sum_{j} \Delta\beta_{j} e^{-ik\zeta_{j}(z)}$$
$$\approx -i \frac{\Omega_{P}}{k} b_{k}(0) \sin(\Omega_{P} z) + p_{k}(0) \cos(\Omega_{P} z)$$

These equations describe collective plasma oscillation

See, for example, S. Ichimaru, *Basic Principles of Plasma Physics*, The Benjamin/Cummins Pub. Co. (1973)

The values of bunching factor and the collective momentum

For z = 0 |b_k^C(0)| ~ 1/\sqrt{N_e}, |b_k^C(0)|~ \sigma_{\Delta\beta}/\sqrt{N_e}
For z = \Lambda_p/4 = \pi/2\Omega_p (one quarter of the plasma oscillation period)

$$|b_k^C(\Lambda_p/4)| \sim k \lambda_D / \sqrt{N_e}$$
, $|p_k^C(\Lambda_p/4)| \sim \Omega_p / k \sqrt{N_e}$

Note that

 $-\frac{|b_k(\Lambda_p/4)|}{|b_k(0)|} = k\lambda_D : \text{ The "shot" noise decreases as } k\lambda_D$ $-\frac{|p_k(\Lambda_p/4)|}{|p_k(0)|} = \frac{1}{k\lambda_D} : \text{ The momentum noise increases as } 1/k\lambda_D$

Effective input noise for high-gain FELs

• 1-D formula for effective input noise (KJK, 1986) is proportional to

$$s_k(z_0) = \left|\sum_{j=1}^{N_e} \frac{e^{-ik\zeta_j(z_0)}}{(\mu - \gamma^2 \Delta \beta_j / \rho)}\right|^2$$

- Which may be expanded by assuming $\frac{\gamma^2 \Delta \beta}{\rho} \equiv \frac{\Delta \gamma}{\gamma} \frac{1}{\rho} < 1$: $s_k(z_0) \approx N_e^2 |b_k(z_0) + (\mu/\rho)\gamma^2 p_k(z_0)|^2$
 - Here μ is the solution of the dispersion relation($|\mu| = 1$ for the cold beam case)
 - $-\rho$ is the FEL strength parameter

Reducing the input noise for high-gain FELs via collective plasma oscillation, when $k\lambda_D <<1$

• Using the values of the b_k and p_k , we obtain

$$- s_k(\mathbf{0}) \sim N_e\left(\mathbf{1} + |\frac{\mu \Delta \gamma/\gamma}{\rho}|^2\right)$$

$$- s_k(\Lambda_p/4) \sim N_e\left(\frac{(k\lambda_D)^2}{\rho} + |\mu \frac{\Delta \gamma/\gamma}{\rho} \frac{1}{k\lambda_D}|^2\right)$$

- The red terms are from the "shot" noise which is reduced after a quarter plasma period
- The "momentum" noise term for $z = \Lambda_p/4$ scales as $1/k\lambda_D$. Since FELs work well if $\frac{\Delta\gamma}{\rho\gamma} \sim 0.1$, this term could become larger than 1 if $k\lambda_D < 0.1$
- It seems that the input SASE noise reduction via plasma oscillation is difficult even for the case $k\lambda_D < 0.1$

Numerical example for the LCLS case*

	LCLS	LCLS injector
Energy [GeV]	14.35 GeV ($\gamma = 28 \times 10^3$)	135×10 ⁻³
Peak current [A]	3.4 kA	40
Energy spread (rms)	1×10-4	2 10-5
Beam size (rms) [microns]	7.7	67.3
Modulation wavelength [Å]	1.5	1×10-4
FEL parameter (ρ)	5×10-4	5.5×10 ⁻³
$k\lambda_{\rm D}$	1.13	0.85×10 ⁻²

(The FEL for the LCLS injector used K=1.41, λ_u =7.3 cm to obtain λ =1 μ with 135 MeV)