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Introduction and Motivation

Motivation for Longitudinal Phase Space Diagnostics

Requirements of high-gain free-electron lasers including various seeded schemes
◮ Good electron beam quality in terms of energy spread, emittance, and peak current
◮ Time-resolved (i.e. longitudinal) information and control of these parameters
◮ Control of beam instabilities and corresponding diagnostics problems, e.g. COTR
◮ Measurement and tunability of electron and photon pulse lengths
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Requirements of high-gain free-electron lasers including various seeded schemes
◮ Good electron beam quality in terms of energy spread, emittance, and peak current
◮ Time-resolved (i.e. longitudinal) information and control of these parameters
◮ Control of beam instabilities and corresponding diagnostics problems, e.g. COTR
◮ Measurement and tunability of electron and photon pulse lengths

Measurement and control of the longitudinal phase space (t, δ)

• Longitudinal position t = −z/c and relative energy or momentum deviation δ =
∆p
p0

• 6-d beam transport matrix provide a powerful formalism to discuss the underlying physics
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⋆ Transverse Deflecting RF Structure in combination with an energy (dipole) spectrometer
• Single-shot capability and high resolution in both energy and time
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer

◮ Start with initial distributions in (t, x) and (x, y)
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer

◮ TDS imposes a time-dependent transversal kick ∆x′(t) ∼ sin(t) ≈ t (at zero-crossing)

◮ Appropriate beam transport optics (R12) maps ∆x′(t) → ∆x(t), i.e. ∆x(t) ∼ t

⋆ Time information is translated to the horizontal position
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer

◮ Start again with present distributions in (δ, y) and (x, y)
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer

◮ Dipole magnet imposes a energy-dependent transversal kick ∆y′(δ) ∼ δ

◮ Appropriate beam transport optics (R34) maps ∆y′(δ) → ∆y(δ), i.e. ∆y(δ) ∼ δ

⋆ Energy information is translated to the vertical position
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer

⋆ Transformation of the longitudinal phases space (t, δ) to (x, y)

⋆ Good agreement compared to the real longitudinal phase space

⋆ Simulation shows some discrepancy when looking into the details
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Principle of Longitudinal Phase Space Diagnostics

Definition of Time and Energy Resolution (r.m.s)

Measureable beam size and time resolution using a TDS

◮ x(s, t) = x0(s) + S(s) · t with shear function S(s) = eV0ω
E

√

β1β2(s)sin(∆Ψx(s)) (S=̂R15)

◮ σx =
√

σ2
x0

+ (S ·σt)2 ⇒ r.m.s. definition of time resolution σR,t = σx0/S
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Measureable beam size and time resolution using a TDS
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E

√

β1β2(s)sin(∆Ψx(s)) (S=̂R15)

◮ σx =
√

σ2
x0

+ (S ·σt)2 ⇒ r.m.s. definition of time resolution σR,t = σx0/S

Measureable beam size and energy resolution using an energy spectrometer

◮ y(s, δ) = y0(s) + D(s) · δ with dispersion function D(s) (D=̂R36)

◮ σy =
√

σ2
y0

+ (D ·σδ)2 ⇒ r.m.s. definition of rel. energy resolution σR,δ = σy0/D

⋆ Small intrinsic beam sizes at screen position and large S and D improve resolution
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Definition of Time and Energy Resolution (r.m.s)
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+ (D ·σδ)2 ⇒ r.m.s. definition of rel. energy resolution σR,δ = σy0/D

⋆ Small intrinsic beam sizes at screen position and large S and D improve resolution

⋆ Intrinsic beam size could vary along the bunch
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Principle of Longitudinal Phase Space Diagnostics

Definition of Time and Energy Resolution (r.m.s)

Measureable beam size and time resolution using a TDS

◮ x(s, t) = x0(s) + S(s) · t with shear function S(s) = eV0ω
E

√

β1β2(s)sin(∆Ψx(s)) (S=̂R15)

◮ σx =
√

σ2
x0

+ (S ·σt)2 ⇒ r.m.s. definition of time resolution σR,t = σx0/S

Measureable beam size and energy resolution using an energy spectrometer

◮ y(s, δ) = y0(s) + D(s) · δ with dispersion function D(s) (D=̂R36)

◮ σy =
√

σ2
y0

+ (D ·σδ)2 ⇒ r.m.s. definition of rel. energy resolution σR,δ = σy0/D

⋆ Small intrinsic beam sizes at screen position and large S and D improve resolution

⋆ Intrinsic beam size could vary along the bunch

⋆ Bunch could have a tilt

⇒ Definition describes the overall resolution

• The same is valid for the energy resolution
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Principle of Longitudinal Phase Space Diagnostics

Calibration, Resolution, and Impact of Jitter: Time
Time calibration: Scanning of RF phase

◮ Time calibration: Centroid offset versus RF phase (φ = ωt ∼ t)

◮ Time resolution: Beam size without shearing by the TDS
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Principle of Longitudinal Phase Space Diagnostics

Calibration, Resolution, and Impact of Jitter: Time
Time calibration: Scanning of RF phase

◮ Time calibration: Centroid offset versus RF phase (φ = ωt ∼ t)

◮ Time resolution: Beam size without shearing by the TDS

Impact of jitter sources on tranverse jitter

• Might be a problem for calibration which is a multi-shot procedure

• The only relevant jitter is arrival time σt and RF phase jitter σφ

→ σx = S ·σt and σx = S ·ω−1 ·σφ

⋆ Basically this is under control for stable machines and can even be improved
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Principle of Longitudinal Phase Space Diagnostics

Calibration, Resolution, and Impact of Jitter: Energy
Energy calibration: Scanning of magnet current (energy)

◮ Energy calibration: Centroid offset versus energy or simply magnet current (∆I/I0)

◮ Energy resolution: Minimum slice energy spread of uncompressed bunches (reso. limited)
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Principle of Longitudinal Phase Space Diagnostics

Calibration, Resolution, and Impact of Jitter: Energy
Energy calibration: Scanning of magnet current (energy)

◮ Energy calibration: Centroid offset versus energy or simply magnet current (∆I/I0)

◮ Energy resolution: Minimum slice energy spread of uncompressed bunches (reso. limited)

Impact of jitter sources on tranverse jitter

• Might be a problem for calibration which is a multishot procedure

• The only relevant jitter is energy jitter σδ

→ σy = D · σδ

⋆ Basically this is under control, but pay attention to hysteresis effects
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Principle of Longitudinal Phase Space Diagnostics

Intrinsic Effects: Induced Energy Spread, CSR and Wakefields
TDS-induced energy spread and chirp: Theory and Experiment

• Transverse deflecting structures induce
energy spread (Panofsky-Wenzel theorem)

Thin-lens matrix → σδ = Kσx = eVk
pc σx

• Thick-lens matrix ⇒ induced energy chirp
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Principle of Longitudinal Phase Space Diagnostics

Intrinsic Effects: Induced Energy Spread, CSR and Wakefields
TDS-induced energy spread and chirp: Theory and Experiment

• Transverse deflecting structures induce
energy spread (Panofsky-Wenzel theorem)

Thin-lens matrix → σδ = Kσx = eVk
pc σx
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Coherent synchrotron radiation effects in the energy spect rometer

⋆ Basically negligible due to the fact that
• time is transformed (e.g. in x) in front of the spectrometer
• dispersion starts energy transformation (e.g. in y) before CSR is built up
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Principle of Longitudinal Phase Space Diagnostics

Intrinsic Effects: Induced Energy Spread, CSR and Wakefields
TDS-induced energy spread and chirp: Theory and Experiment

• Transverse deflecting structures induce
energy spread (Panofsky-Wenzel theorem)

Thin-lens matrix → σδ = Kσx = eVk
pc σx
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Wakefield effects

⋆ Basically negligible when having no large position offsets
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space
Initial correlations in (x′, t) may give different results when changing zero-crossing

• σx =
√

σ2
x0

+ (C ± S)2 ·σ2
t
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Systematic Errors due to Initial Correlations in the Phase Space
Initial correlations in (x′, t) may give different results when changing zero-crossing

• σx =
√

σ2
x0

+ (C ± S)2 ·σ2
t

⋆ If C is a constant: simple calculation using values at
±S (0 and 180 deg)
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• σx =
√

σ2
x0

+ (C ± S)2 ·σ2
t

⋆ If C is a constant: simple calculation using values at
±S (0 and 180 deg)

⋆ If C varies along the bunch (i.e. C(t)): reconstruction
from both projections is possible
(idea and Ref. by H. Loos (SLAC))
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⋆ If C is a constant: simple calculation using values at
±S (0 and 180 deg)

⋆ If C varies along the bunch (i.e. C(t)): reconstruction
from both projections is possible
(idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space
Initial correlations in (x′, t) may give different results when changing zero-crossing

• σx =
√

σ2
x0

+ (C ± S)2 ·σ2
t

⋆ If C is a constant: simple calculation using values at
±S (0 and 180 deg)

⋆ If C varies along the bunch (i.e. C(t)): reconstruction
from both projections is possible
(idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)

• Strong effects in head and tail
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from both projections is possible
(idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)

• Strong effects in head and tail

⋆ Linear scaling will not help
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space
Initial correlations in (x′, t) may give different results when changing zero-crossing

• σx =
√

σ2
x0

+ (C ± S)2 ·σ2
t

⋆ If C is a constant: simple calculation using values at
±S (0 and 180 deg)

⋆ If C varies along the bunch (i.e. C(t)): reconstruction
from both projections is possible
(idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)

• Strong effects in head and tail

⋆ Linear scaling will not help

⋆ Reconstruction from two projections
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Principle of Longitudinal Phase Space Diagnostics

Mitigation of Coherent Optical Transition Radiation: Simulations

Time coordinate along the energy spectrometer

◮ Longitudinal position after the spectrometer: tf = R53 · yi + R54 · y′i + ti + R56 · δi
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Principle of Longitudinal Phase Space Diagnostics

Mitigation of Coherent Optical Transition Radiation: Simulations
Time coordinate along the energy spectrometer

◮ Longitudinal position after the spectrometer: tf = R53 · yi + R54 · y′i + ti + R56 · δi

◮ σtf ≈ R53 · σyi and R53 ≈ α i.e. the bending angle of the dipole
◮ R53 ·σyi smears out density modulations

• Microbunches overlap and smear out

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 10 / 27



Principle of Longitudinal Phase Space Diagnostics

Mitigation of Coherent Optical Transition Radiation: Simulations
Time coordinate along the energy spectrometer

◮ Longitudinal position after the spectrometer: tf = R53 · yi + R54 · y′i + ti + R56 · δi
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Principle of Longitudinal Phase Space Diagnostics

Mitigation of Coherent Optical Transition Radiation: Simulations
Time coordinate along the energy spectrometer

◮ Longitudinal position after the spectrometer: tf = R53 · yi + R54 · y′i + ti + R56 · δi

◮ σtf ≈ R53 · σyi and R53 ≈ α i.e. the bending angle of the dipole
◮ R53 ·σyi smears out density modulations

• Microbunches overlap and smear out

• Larger beam size → larger overlap

• Larger period → less overlap
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Principle of Longitudinal Phase Space Diagnostics

Mitigation of Coherent Optical Transition Radiation: Simulations
Time coordinate along the energy spectrometer

◮ Longitudinal position after the spectrometer: tf = R53 · yi + R54 · y′i + ti + R56 · δi

◮ σtf ≈ R53 · σyi and R53 ≈ α i.e. the bending angle of the dipole
◮ R53 ·σyi smears out density modulations

• Microbunches overlap and smear out

• Larger beam size → larger overlap

• Larger period → less overlap

Particle tracking simulation with initial density modulat ion

◮ 5µm modulation in (t, δ)T before the spectrometer

◮ No modulation in (t, δ)T after the spectrometer
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Principle of Longitudinal Phase Space Diagnostics

Mitigation of Coherent Optical Transition Radiation: Simulations
Time coordinate along the energy spectrometer

◮ Longitudinal position after the spectrometer: tf = R53 · yi + R54 · y′i + ti + R56 · δi

◮ σtf ≈ R53 · σyi and R53 ≈ α i.e. the bending angle of the dipole
◮ R53 ·σyi smears out density modulations

• Microbunches overlap and smear out

• Larger beam size → larger overlap

• Larger period → less overlap

Particle tracking simulation with initial density modulat ion

◮ 5µm modulation in (t, δ)T before the spectrometer

◮ No modulation in (t, δ)T after the spectrometer

⋆ Wavelengths λc ≪ 2πR51σx will be suppressed

⋆ Proposal: Strong COTR mitigation in an energy
spectrometer ⇒ emittance measurements
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FERMI@Elettra
Courtesy of P. Craievich. For details: WEPA03.

Free Electron Laser for Multidisciplinary Investigations (FERMI)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 11 / 27



Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FERMI@Elettra
Courtesy of P. Craievich. For details: WEPA03.

Free Electron Laser for Multidisciplinary Investigations (FERMI)

Longitudinal phase space diagnostics at FERMI@Elettra

◮ LPS data in SPBC1 at low energy
C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 11 / 27



Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FERMI@Elettra
Courtesy of P. Craievich. For details: WEPA03.

Free Electron Laser for Multidisciplinary Investigations (FERMI)

Longitudinal phase space diagnostics at FERMI@Elettra

◮ LPS data in SPBC1 at low energy ◮ High energy TDS (both planes) will be installed soon
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at SACLA/SPring-8
Courtesy of Y. Otake.

SPring-8 Angstrom Compact Free-Electron Laser (SACLA)
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at SACLA/SPring-8
Courtesy of Y. Otake.

SPring-8 Angstrom Compact Free-Electron Laser (SACLA)

Longitudinal phase space diagnostics at SACLA

◮ Quadrupole kicks in a dispersive section

◮ Residual dispersion after the bunch compressor
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at SACLA/SPring-8
Courtesy of Y. Otake.

SPring-8 Angstrom Compact Free-Electron Laser (SACLA)

Longitudinal phase space diagnostics at SACLA

◮ Quadrupole kicks in a dispersive section

◮ Residual dispersion after the bunch compressor

◮ Still in commissioning phase

◮ Preliminary longitudinal phase space measurement ◮
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Longitudinal Phase Space Diagnostics at LCLS/SLAC
Courtesy of Y. Ding, P. Emma, and H. Loos.

The Linac Coherent Light Source (LCLS)

Longitudinal phase space diagnostics at LCLS

◮ Longitudinal phase space diagnostics

◮ Longitudinal phase space manipulation
• Laser heater

◮ Longitudinal phase space linearization
• X-band RF linearizer

◮ In preparation
• X-band TDS after the undulators
(project started this July)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 13 / 27



Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FLASH/DESY
The Free-Electron Laser in Hamburg (FLASH)
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◮ Longitudinal phase space diagnostics in front of the undulators
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LPS diagnostics

Longitudinal phase space diagnostics at FLASH

◮ Longitudinal phase space diagnostics in front of the undulators
◮ Indispensable for beam dynamics studies in general
◮ Longitudinal phase space linearizations with third-harmonic RF linearizer (3.9 GHz)
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at E-XFEL/DESY
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Longitudinal Phase Space Diagnostics at E-XFEL/DESY
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Longitudinal phase space diagnostics at E-XFEL

Energy
spectrometer
(local dump)TDS

FODO section
◮ Three setups for longitudinal phase space

measurements (including slice emittance)

◮ Higher-harmonic RF linearizer and a laser heater

◮ Proposal: Apply longitudinal phase space diagnostics
on individuals bunches of the train (septum magnet)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 15 / 27



Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at LCLS/SLAC
For details: TUOCAB02 by P. Emma et al. in the Proceedings of PAC’07

Linearization of the longitudinal phase space using an X-ba nd RF linearizer

Measurements

◮ Longitudinal phase space (off-crest):
X-band linearizer switched off
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Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at LCLS/SLAC
For details: TUOCAB02 by P. Emma et al. in the Proceedings of PAC’07

Linearization of the longitudinal phase space using an X-ba nd RF linearizer

Measurements

◮ Longitudinal phase space (off-crest):
X-band linearizer switched off

◮ Longitudinal phase space (off-crest):
X-band linearizer switched on

◮ Control of the bunch lengths allows control
of the FEL photon pulse durations
(still a hot topic)
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Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at FLASH/DESY
Measurement of the longitudinal phase space: third-harmon ic RF linearizer off
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Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at FLASH/DESY
Comparison: third-harmonic RF linearizer on/off

◮ Compression in a magnetic bunch compressor:
C−1 = (1+ h1R56) + (h2R56 + 2h2

1T566)ti
• h1,h2: first and second order energy chirp

• R56, T566: first and second oder longitudinal dispersion

◮ Eliminate time-dependency of C−1 by using a proper
h2 ⇒ higher-harmonic RF system (dual-frequency)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 17 / 27



Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor
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Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor

• Start with uncompressed bunches
(C−1 = 1)

• End with compressed bunches (C−1 → 0)

⋆ Strong local compression due to collective
effects (not fully understood yet)
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Control and Manipulation of the Longitudinal Phase Space

FEL Operation with Non-linear/Linear Compression at FLASH/DESY

The old non-linear compression mode

⋆ Non-linear compression: sharp leading spike (small charge
fraction) with a long trailing tail
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Control and Manipulation of the Longitudinal Phase Space

FEL Operation with Non-linear/Linear Compression at FLASH/DESY

FEL operation with new linear compression mode

⋆ Non-linear compression: sharp leading spike (small charge
fraction) with a long trailing tail

⋆ Linear compression: flexible bunch lengths and shapes
(more regular but still complex)

⋆ Linear compression: more FEL pulse energies (at least 4×)

• Appearance of double-horns like at LCLS

⋆ Double-horns show some fragmentation
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Control and Manipulation of the Longitudinal Phase Space

Tailoring the Longitudinal Phase Space for Wakefield Experiments
For details: P. Piot et al., Fermilab preprint PUB-11-339-APC (2011)

Beam-driven acceleration with drive and witness bunch

◮ Wakefield acceleration in dielectric structures using drive and witness
bunches

◮ Transformer ratio R =
E+

E−

is limited to ≤ 2 for symmetric current profiles

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 20 / 27



Control and Manipulation of the Longitudinal Phase Space

Tailoring the Longitudinal Phase Space for Wakefield Experiments
For details: P. Piot et al., Fermilab preprint PUB-11-339-APC (2011)

Beam-driven acceleration with drive and witness bunch

◮ Wakefield acceleration in dielectric structures using drive and witness
bunches

◮ Transformer ratio R =
E+

E−

is limited to ≤ 2 for symmetric current profiles

◮ Enhancement of the R by linearly ramped current profiles

⋆ Linearly ramped current profiles (from experiment) enables (from simulations) R > 6
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Control and Manipulation of the Longitudinal Phase Space

Observations of Microbunching Instabilities in Time-domain

Linearly chirped bunches with intensity modulations at FLA SH/DESY and LCLS/SLAC
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◮ Indication of microbunches

◮ Density modulations (FLASH)

◮ Energy modulations (LCLS)
• chirped bunches → E ∝ t
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Linearly chirped bunches with intensity modulations at FLA SH/DESY and LCLS/SLAC
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◮ Indication of microbunches

◮ Density modulations (FLASH)

◮ Energy modulations (LCLS)
• chirped bunches → E ∝ t

Tilted microbunches and energy spread increase at FLASH/DE SY
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◮ Indication and observation of:

• tilted microbunches
• increased slice energy spread

◮ Common observation since
operation with linear compression

⋆Better control of slice energy spread is needed, especially for seeded FELs
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Control and Manipulation of the Longitudinal Phase Space

Mitigation of Coherent Optical Transition Radiation: Experiment
Compression instability: Charge 0.4 nC
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⋆ Strong discrepancy of current profiles between non-dispersive and dispersive section
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Control and Manipulation of the Longitudinal Phase Space

Mitigation of Coherent Optical Transition Radiation: Experiment
Compression instability: Charge 0.5 nC

⋆ Local COTR emission spoils current profile measurement in non-dispersive section
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Control and Manipulation of the Longitudinal Phase Space

Mitigation of Coherent Optical Transition Radiation: Experiment

⋆ COTR is most probably generated by an ultra-short local spike

⋆ No indication for COTR in the dispersive section

• Poster on mitigation of COTR in the non-dispersive section at FLASH (M. Yan et al. THPB16)
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Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching
Instabilities For details: WEPB15 by Z. Huang et al. and WEOB4 by D. Xiang et al.

◮ Transverse deflecting structures induce
energy spread (Panofsky-Wenzel theorem)
⋆ beam heating (cf. laser-heater)

◮ Energy spread is correlated, i.e. reversible
⋆ heat only where it’s necessary
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◮ Transport matrix: TCAV1 → TCAV2
(streaking ⊥ bending plane)

⋆ K1R56: effective energy spread for
microbunching suppression

⋆ energy spread and spatial chirp
cancelation
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Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching
Instabilities For details: WEPB15 by Z. Huang et al. and WEOB4 by D. Xiang et al.

Demonstration setup with parameters comparable to a propos al at LBNL (NGLS)

◮ Longitudinal phase space:
• start with 1 keV slice energy spread
• compression C ≈ 13
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⋆ Perfect cancelation of additional energy
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Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching
Instabilities For details: WEPB15 by Z. Huang et al. and WEOB4 by D. Xiang et al.

Demonstration setup with parameters comparable to a propos al at LBNL (NGLS)

◮ Longitudinal phase space:
• start with 1 keV slice energy spread
• compression of about C ≈ 13

⋆ Perfect cancelation of additional energy
spread induced by TCAV1
• CSR: small differences in the tails

⋆ CSR-driven microbunching:
• start with 5% density modulation

⋆ TCAV-heater switched on

Longitudinal phase space diagnostics comes for free
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Special Applications of Longitudinal Phase Space Diagnostics

Time-resolved X-ray Diagnostics with Femtosecond Resolution in
Free-Electron Lasers For details: WEPA01 and THOCI2 by Y. Ding et al.

Longitudinal phase space diagnostics right after the undul ators
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Special Applications of Longitudinal Phase Space Diagnostics

Time-resolved X-ray Diagnostics with Femtosecond Resolution in
Free-Electron Lasers For details: WEPA01 and THOCI2 by Y. Ding et al.

Longitudinal phase space diagnostics right after the undul ators

◮ Time-dependent energy loss and spread
due to FEL process

◮ Correlation with temporal FEL photon pulse
profile (replica of FEL photon pulse)
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Special Applications of Longitudinal Phase Space Diagnostics

Time-resolved X-ray Diagnostics with Femtosecond Resolution in
Free-Electron Lasers For details: WEPA01 and THOCI2 by Y. Ding et al.

Longitudinal phase space diagnostics right after the undul ators

◮ Time-dependent energy loss and spread
due to FEL process

◮ Correlation with temporal FEL photon pulse
profile (replica of FEL photon pulse)

⋆ All features of high-resolution longitudinal
phase space diagnostics (electrons beams):
• independent of FEL wavelength
• high-dynamic range
• single-shot temporal profiles
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⋆ Both with high resolution, high dynamic range, and single-shot capability

⋆ Mitigation of coherent radiation effects of screen based diagnostics, e.g. COTR

⋆ Be aware of systematic errors and the definition and meaning of resolution

Control of the longitudinal phase space by dual-frequency l inear accelerators

⋆ Higher harmonic RF systems for longitudinal phase space linearizations
• linear compression

⋆ Improvement of FEL performance in terms of pulse length tunabilty and intensity

⋆ Flexible longitudinal pulse shaping in general (e.g. for wakefield experiments)

Special applications of longitudinal phase space diagnost ics

⋆ May provide useful information on X-ray pulses

⋆ Reversible Electron Beam Heater for Suppression of Microbunching Instabilities
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