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Motivation for Longitudinal Phase Space Diagnostics

Requirements of high-gain free-electron lasers including various seeded schemes
» Good electron beam quality in terms of energy spread, emittance, and peak current
» Time-resolved (i.e. longitudinal) information and control of these parameters
» Control of beam instabilities and corresponding diagnostics problems, e.g. COTR
» Measurement and tunability of electron and photon pulse lengths
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Requirements of high-gain free-electron lasers including various seeded schemes
» Good electron beam quality in terms of energy spread, emittance, and peak current
» Time-resolved (i.e. longitudinal) information and control of these parameters
» Control of beam instabilities and corresponding diagnostics problems, e.g. COTR
» Measurement and tunability of electron and photon pulse lengths

Measurement and control of the longitudinal phase space (t,0)
Longitudinal position t = —z/c and relative energy or momentum deviation § = %
6-d beam transport matrix provide a powerful formalism to discuss the underlying physics
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s Transverse Deflecting RF Structure in combination with an energy (dipole) spectrometer
Single-shot capability and high resolution in both energy and time
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer
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» Start with initial distributions in (t, x) and (x,y)
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The Principle: TDS in Combination with an Energy Spectrometer
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» TDS imposes a time-dependent transversal kick AX' (t) ~ sin(t) ~ t (at zero-crossing)
» Appropriate beam transport optics (Ry2) maps AX'(t) — Ax(t), i.e. Ax(t) ~t
+ Time information is translated to the horizontal position
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer
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» Start again with present distributions in (4, y) and (x, y)
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer
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» Dipole magnet imposes a energy-dependent transversal kick Ay’ (§) ~ §
» Appropriate beam transport optics (Rss) maps Ay (6) — Ay(d), i.e. Ay(§) ~ §
s Energy information is translated to the vertical position
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Principle of Longitudinal Phase Space Diagnostics

The Principle: TDS in Combination with an Energy Spectrometer
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“ Transformation of the longitudinal phases space (t, d) to (x,y)
% Good agreement compared to the real longitudinal phase space
% Simulation shows some discrepancy when looking into the details
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Definition of Time and Energy Resolution (r.m.s)

Measureable beam size and time resolution using a TDS

X(s,t) = %o(S) + S(s) - t with shear function S(s) = Vow =E—V B1B2(9)sin(AW(s)) (S=Rus)

> ox = /0% + (S-01)%2 = rm.s. definition of time resolution or ¢ = 0x,/S
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Definition of Time and Energy Resolution (r.m.s)

Measureable beam size and time resolution using a TDS

> X(5,1) = %o(8) + S(8) - twith shear function S(s) = &% \/B1B(S)siN(ATK(S)  (S=Rus)

> ox = /0% + (S-01)%2 = rm.s. definition of time resolution or ¢ = 0x,/S

Measureable beam size and energy resolution using an energy spectrometer

> Y(s,6) = yo(s) + D(s) - 6 with dispersion function D(s) (D=Rgs)

> oy = /02 + (D-05)? = r.m.s. definition of rel. energy resolution or 5 = oy, /D

+ Small intrinsic beam sizes at screen position and large Sand D improve resolution

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 5/27



Definition of Time and Energy Resolution (r.m.s)

Measureable beam size and time resolution using a TDS
> X(s,t) = xo(s) + S(s) - t with shear function §(s) = eVow =BV B1B2(9)sin(AW(s)) (S=Rus)
> ox = /0% + (S-01)2 = rm.s. definition of time resolution ort = 0, /S

Measureable beam size and energy resolution using an energy spectrometer

> Y(s,8) = Yo(s) + D(s) - 6 with dispersion function D(s) (D=Rs3p)
> oy = /02 + (D-05)? = r.m.s. definition of rel. energy resolution or 5 = oy, /D

+ Small intrinsic beam sizes at screen position and large Sand D improve resolution

X
% Intrinsic beam size could vary along the bunch
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Definition of Time and Energy Resolution (r.m.s)

Measureable beam size and time resolution using a TDS
> X(s,t) = xo(s) + S(s) - t with shear function §(s) = eVow =BV B1B2(9)sin(AW(s)) (S=Rus)
> ox = /0% + (S-01)2 = rm.s. definition of time resolution ort = 0, /S

Measureable beam size and energy resolution using an energy spectrometer

> Y(s,8) = Yo(s) + D(s) - 6 with dispersion function D(s) (D=Rs3p)
> oy = /02 + (D-05)? = r.m.s. definition of rel. energy resolution or 5 = oy, /D

+ Small intrinsic beam sizes at screen position and large Sand D improve resolution

x
% Intrinsic beam size could vary along the bunch
% Bunch could have a tilt
= Definition describes the overall resolution q(,,,eff

The same is valid for the energy resolution
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Principle of Longitudinal Phase Space Diagnostics

Calibration, Resolution, and Impact of Jitter: Time
Time calibration: Scanning of RF phase

Time calibration Transverse beam profile
1400 -
_Sl‘?sz 518+-18 pixel/deg - 1500 — Gaussian fit: 4.0 pixels <—> 8 fs
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» Time calibration: Centroid offset versus RF phase (¢ = wt ~ 1)

» Time resolution: Beam size without shearing by the TDS
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Calibration, Resolution, and Impact of Jitter: Time
Time calibration: Scanning of RF phase

Time calibration Transverse beam profile
1400, -
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» Time calibration: Centroid offset versus RF phase (¢ = wt ~ 1)

» Time resolution: Beam size without shearing by the TDS

Impact of jitter sources on tranverse jitter

Might be a problem for calibration which is a multi-shot procedure

The only relevant jitter is arrival time ot and RF phase jitter o
— ox = S-otand oy = S~w’1-a¢

s Basically this is under control for stable machines and can even be improved
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Principle of Longitudinal Phase Space Diagnostics

Calibration, Resolution, and Impact of Jitter: Energy

Energy calibration: Scanning of magnet current (energy)

Rel. energy calibration Slice energy spread
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» Energy calibration: Centroid offset versus energy or simply magnet current (Al /lo)
» Energy resolution: Minimum slice energy spread of uncompressed bunches (reso. limited)
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Principle of Longitudinal Phase Space Diagnostics

Calibration, Resolution, and Impact of Jitter: Energy

Energy calibration: Scanning of magnet current (energy)

Rel. energy calibration

=
(=3
(=3

—Slope: —36.6+-0.4 pixel/10~
_CE: —-2.73+-0.03 10" /pixel

Beam position (pixel)
B wn (= ~
S 2 2 2
S S S &

)
(=1
=]

-5 0 5
Rel. magnet current / 107

Slice energy spread

0
time (ps)

» Energy calibration: Centroid offset versus energy or simply magnet current (Al /lo)

» Energy resolution: Minimum slice energy spread of uncompressed bunches (reso. limited)

Might be a problem for calibration which is a multishot procedure

Impact of jitter sources on tranverse jitter

The only relevant jitter is energy jitter o5

—oy=D-o5s

s Basically this is under control, but pay attention to hysteresis effects
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Intrinsic Effects: Induced Energy Spread, CSR and Wakefields

TDS-induced energy spread and chirp: Theory and Experiment

Transverse deflecting structures induce X 1 L KL/2 0 Xi
energy spread (Panofsky-Wenzel theorem) Xt _ 0 1 K 0 X/
Thin-lens matrix — o5 = Kox = &Ko, t 0 o0 1 0 fi

e 5 K KL/2 K2L/6 1 5

Thick-lens matrix = induced energy chirp
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Principle of Longitudinal Phase Space Diagnostics

Intrinsic Effects: Induced Energy Spread, CSR and Wakefields
TDS-induced energy spread and chirp: Theory and Experiment

Transverse deflecting structures induce KL/2

X 1 L 0
energy spread (Panofsky-Wenzel theorem) x| |o 1 K o] X
Thin-lens matrix — o5 = Koy = %‘ax i 0 0 1 0 &
_ o _ 5 K KL/2 K2L/6 1 5i
Thick-lens matrix = induced energy chirp
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Principle of Longitudinal Phase Space Diagnostics

Intrinsic Effects: Induced Energy Spread, CSR and Wakefields
TDS-induced energy spread and chirp: Theory and Experiment

Transverse deflecting structures induce X 1 L KL/2 0 Xi
energy spread (Panofsky-Wenzel theorem) x| |o 1 K o] X
Thin-lens matrix — o5 = Kox = eg/ck t 0 0 1 0 i
_ _ _ ) 5 K KL/2 K2L/6 1 Si
Thick-lens matrix = induced energy chirp
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Coherent synchrotron radiation effects in the energy spect rometer

s Basically negligible due to the fact that
time is transformed (e.g. in X) in front of the spectrometer
dispersion starts energy transformation (e.g. in y) before CSR is built up
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Principle of Longitudinal Phase Space Diagnostics

Intrinsic Effects: Induced Energy Spread, CSR and Wakefields
TDS-induced energy spread and chirp: Theory and Experiment

Transverse deflecting structures induce X 1 L KL/2 0
energy spread (Panofsky-Wenzel theorem) x| |o 1 K 0
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Wakefield effects

s Basically negligible when having no large position offsets
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space

Initial correlations in (X', t) may give different results when changing zero-crossing

ox = cr>%0+(C:|:S)2~crt2

0 deg 180 deg
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space

Initial correlations in (X', t) may give different results when changing zero-crossing

courtesy of H. Loos (SLAC)
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space

Initial correlations in (X', t) may give different results when changing zero-crossing

ox = U>%O+(C:I:S)2-crt2

“ If Cis a constant: simple calculation using values at
+S(0 and 180 deg)

s If C varies along the bunch (i.e. C(t)): reconstruction
0 deg 180 deg from both projections is possible
(idea and Ref. by H. Loos (SLAC))
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space

Initial correlations in (X', t) may give different results when changing zero-crossing

ox = U%-+(Cﬂ:SV'U€

“ If Cis a constant: simple calculation using values at
+S(0 and 180 deg)

s If C varies along the bunch (i.e. C(t)): reconstruction
0 deg 180 deg from both projections is possible
(idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)

4
e 180deg
)
=
=0
S
)
450 50 450 50

x/S (%fs) —X/SO(fs)
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space

Initial correlations in (X', t) may give different results when changing zero-crossing

ox = U>%O+(C:I:S)2-crt2

“ If Cis a constant: simple calculation using values at
+S(0 and 180 deg)
s If C varies along the bunch (i.e. C(t)): reconstruction

0 deg 180 deg from both projections is possible
(idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)

=——real distribution

10f = simulated measurement: Odeg

— simulated measurement: 180deg Strong effects in head and tail

current (kKA)

=50 50

0
t (fs)
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Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space

Initial correlations in (X', t) may give different results when changing zero-crossing

ox = /0% +(C+£92.5¢
“ If Cis a constant: simple calculation using values at
+S(0 and 180 deg)

s If C varies along the bunch (i.e. C(t)): reconstruction
0 deg 180 deg from both projections is possible
(idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)

20
10
':3 d Strong effects in head and tail
3 0 . ) .
Z ; % Linear scaling will not help
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C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 9/27



Principle of Longitudinal Phase Space Diagnostics

Systematic Errors due to Initial Correlations in the Phase Space

Initial correlations in (X', t) may give different results when changing zero-crossing

ox = U>%O+(C:I:S)2-crt2

“ If Cis a constant: simple calculation using values at
+S(0 and 180 deg)

s If C varies along the bunch (i.e. C(t)): reconstruction
0 deg 180 deg from both projections is possible
(idea and Ref. by H. Loos (SLAC))

Simulated measurements with both zero-crossings (0 and 180 deg)

10,

== real distribution

8| ——simulated measurement: corrected
Strong effects in head and tail

% Linear scaling will not help

s Reconstruction from two projections

current (kA)

0 50
t (fs)
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Mitigation of Coherent Optical Transition Radiation: Simulations

Time coordinate along the energy spectrometer

» Longitudinal position after the spectrometer: tr = Rsz-Yi + Rsa -y + ti + Rsg - 6
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Mitigation of Coherent Optical Transition Radiation: Simulations

Time coordinate along the energy spectrometer

» Longitudinal position after the spectrometer: ty = Rsz-yi + Rsa -y +ti + Rsg - di
» oy =~ Rs3- oy and Rsz =~ « i.e. the bending angle of the dipole
» Rs3- oy, smears out density modulations

Microbunches overlap and smear out

mm ///I//

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 10/ 27



Mitigation of Coherent Optical Transition Radiation: Simulations

Time coordinate along the energy spectrometer

» Longitudinal position after the spectrometer: ty = Rsz-yi + Rsa -y +ti + Rsg - di
» oy =~ Rs3- oy and Rsz =~ « i.e. the bending angle of the dipole
» Rs3- oy, smears out density modulations

_Rss | Microbunches overlap and smear out

“m‘ /////// Larger beam size — larger overlap
NYYYYYN\ S 7RRRRRNN
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Mitigation of Coherent Optical Transition Radiation: Simulations

Time coordinate along the energy spectrometer

» Longitudinal position after the spectrometer: ty = Rsz-yi + Rsa -y +ti + Rsg - di
» oy =~ Rs3- oy and Rsz =~ « i.e. the bending angle of the dipole
» Rs3- oy, smears out density modulations

Microbunches overlap and smear out

Rs3
‘ . ‘ ‘ //// Larger beam size — larger overlap
NNNN

Larger period — less overlap
XXX
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Mitigation of Coherent Optical Transition Radiation: Simulations
Time coordinate along the energy spectrometer
» Longitudinal position after the spectrometer: t; = Rs3-Yi + Rs4- Y, 4+ ti + Rsg - di

» oy =~ Rs3- oy and Rsz =~ « i.e. the bending angle of the dipole
» Rs3- o0y, smears out density modulations

Microbunches overlap and smear out

‘ . ‘ ‘ //// Larger beam size — larger overlap
NNAN

Larger period — less overlap
Particle tracking simulation with initial density modulat ion

Fourier transform: real profile

L} — Before specirometer

— Aftr spectrometer » 5um modulation in (t, §)T before the spectrometer
» No modulation in (t, §)T after the spectrometer

4 5 6
wavelength (Wm)
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Mitigation of Coherent Optical Transition Radiation: Simulations

Time coordinate along the energy spectrometer

» Longitudinal position after the spectrometer: t; = Rs3-Yi + Rs4- Y, 4+ ti + Rsg - di
» oy =~ Rs3- oy and Rsz =~ « i.e. the bending angle of the dipole
» Rs3- o0y, smears out density modulations

— Microbunches overlap and smear out
‘ . ‘ ‘ //// Larger beam size — larger overlap
Larger period — less overlap
NNAN
Particle tracking simulation with initial density modulat ion

Fourier transform: real profile

1f — r . .
efore spectrometet » 5um modulation in (t,§)T before the spectrometer

= After spectrometer

» No modulation in (t, §)T after the spectrometer
s Wavelengths A\¢ < 27Rs10x will be suppressed

% Proposal: Strong COTR mitigation in an energy
spectrometer = emittance measurements

4 5 6
wavelength (Wm)
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FERMI@Elettra
Courtesy of P. Craievich. For details: WEPAO3.

Free Electron Laser for Multidisciplinary Investigations (FERMI)
con ac1 p—
© . o Ba ‘13 B2 4
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Longitudinal Phase Space Diagnostics at FERMI@Elettra

Free Electron Laser for Multidisciplinary Investigations (FERMI)
Gun i BC1 linac tunnel
: M u B e o B2 |,

LPS Diagnostics

undulator hall

‘ " SPREADER FELL |

o aee? - —
/TBM- e —
AL R I
\ o, N ) % \ |
RN %Y SRd

1260V

Longitudinal phase space diagnostics at FERMI@Elettra

» LPS data in SPBC1 at low energy
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Longitudinal Phase Space Diagnostics at FERMI@Elettra

Free Electron Laser for Multidisciplinary Investigations (FERMI)
Gun i BC1 linac tunnel
: M u B e o B2 |,

LPS Diagnostics

undulator hall

‘ " SPREADER FELL |

o aee? - —
/TL;M--——- e —
PN ;

N\ |
e %,

LR Rl

» LPS data in SPBC1 at low energy » High energy TDS (both planes) will be installed soon
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at SACLA/SPring-8

SPring-8 Angstrom Compact Free-Electron Laser (SACLA)

$05 .8 58
523820 €8 g3 €3 ¢g
SES3PTE 22 35 55 3%
OERe88 3 @ g S-band Acc. = € C-bandAcc. — g S=S Cband Accelerator In-vacuum Undulator
LORNST TG 28 6mx4units &G 4mx12units &S =88 4mx52 units 5mx 18 units XFEL
bypass bypass.

0.5 MeV 30 MeV 04GeV TaGe T . 8GeV Ad=ﬁo=na. beamline %
TATns 50A,3ps 0.6KA,300fs 3kA,30fs LPS diagnostics3a, 30fs vithafewundubors  podo
om 20m 70m 140m 400m 600 m
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at SACLA/SPring-8

SPring-8 Angstrom Compact Free-Electron Laser (SACLA)

EnE B 5 5
se2859 €4 2% gp gz
SES3PTE 22 35 55 3%
OERe88 3 ol E S-band Acc. = E C-bandAcc. 5 E S¢S C-band Accelerator In-vacuum Undulator
LONS L G 20 6mx4units &S 4mx 12 units O .:88 4 mx 52 units 5mx 18 units XFEL
bypass bypass.
05 MeV 30 Mev 04 GeV TaGe T . 8GeV Ad=dmo=na. beamiine %
TATns 50A,3ps 0.6KA,300fs 3kA,30fs LPS diagnostics3a, 30fs vithafewundubors  podo
om 20m 70m 140 m 400 m 600 m
Longitudinal phase space diagnostics at SACLA
Q-magnet

for dispersion leakage

Lower energy

Transverse RF Deflector  Higher energy OT Monitor

» Quadrupole kicks in a dispersive section
» Residual dispersion after the bunch compressor

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.



Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at SACLA/SPring-8

SPring-8 Angstrom Compact Free-Electron Laser (SACLA)

EwE 5 S S
grpS%0 £4 £ £g e

£$s322 2 S5 25 28 282

CERe88 8 ¢ g S-bandAcc. © € C-bandAcc. — g S% 5 C-band Accelerator In-vacuum Undulator
LONSTLE GO 20 6mx4units SO 4mx12units O =S 4mx52 units 5mx 18 units XFEL

bypass bypass 4 —

0.5 MeV 30 MeV 0.4 GeV 1.4 GeV - . 8GeV  additional beamline

1A, 1ns 50A,3ps 0.6 kA, 300fs 3kA, 30 s LPS diagnostics3ka, 30fs witha fewundulators DOp
Om 20m 70m 140m 400 m 600 m

Longitudinal phase space diagnostics at SACLA
Q-magnet
for dispersion leakage
=\ = Lower energy

A

Bunch Compressor f P
Transverse RF Deflector  Higherenergy  yro vy o b o0

Quadrupole kicks in a dispersive section
field of view 7mm
time calibration 53fs/mm

>
» Residual dispersion after the bunch compressor ol i) B
» Still in commissioning phase

» Preliminary longitudinal phase space measurement

FEL 2011, Shanghai 12 /27
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at LCLS/SLAC
Courtesy of Y. Ding, P. Emma, and H. Loos.

The Linac Coherent Light Source (LCLS)

6MeV 135 MeV 250 MeV 430 GeV 13.6 GeV

Linac-3

LPS diagnostics =~~~
SLAC linac tunnel | research yard

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 13/27



Longitudinal Phase Space Diagnostics at LCLS/SLAC

The Linac Coherent Light Source (LCLS)

6MeV 135 MeV 250 MeV 430 GeV

LPS diagnostics =~~~
SLAC linac tunnel

Longitudinal phase space diagnostics at LCLS

» Longitudinal phase space diagnostics

» Longitudinal phase space manipulation
» Laser heater

Emittance
Screens/Wires

RF
Deflector

2-km point in 3-km SLAC linact
135-MeV/
Spectrometer

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.




Longitudinal Phase Space Diagnostics at LCLS/SLAC

The Linac Coherent Light Source (LCLS)

6MeV 135 MeV 250 MeV 430 GeV 3 13.6 GeV

Linac-3

LPS diagnostics =~~~

SLAC linac tunnel i research yard

Longitudinal phase space diagnostics at LCLS

» Longitudinal phase space diagnostics
L1s - » Longitudinal phase space manipulation

X-band RF BC1
ace. section Laser heater

» Longitudinal phase space linearization
X-band RF linearizer

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 13/27



Longitudinal Phase Space Diagnostics at LCLS/SLAC

The Linac Coherent Light Source (LCLS)

6MeV 135 MeV 250 MeV 430 GeV

| 13.6Gev

Linac-3

LPS diagnostics =~~~

SLAC linac tunnel i research yard

Longitudinal phase space diagnostics at LCLS

» Longitudinal phase space diagnostics

L1s - » Longitudinal phase space manipulation
X band R o Laser heater

» Longitudinal phase space linearization
X-band RF linearizer

oipole » In preparation

lm 5ueak
c>__-- -0 --—=--Y-.. % X-band TDS after the undulators
“e

gnatster Kot detecor T“ (project started this July)

2,
Ap=90°
Pa 7&

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 13/27
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FLASH/DESY
The Free-Electron Laser in Hamburg (FLASH)

RF LPS diagnostics

RF Gun Bunch Bunch Stations

Compressor Compressor v v Collimator g SFLASH
3rd  Diagnos-
Laser harmonic tics Accelerating Structures Bypass EmeFrliErl;\enls
5 MeV 150 MeV 500 MeV 1.2GeV
315m

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.




Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FLASH/DESY
The Free-Electron Laser in Hamburg (FLASH)

RF LPS diagnostics
RF Gun o Bunch c Bunch Stations ol SFLASH
ompressor ompressor v v ollimator
E@.&-{Jﬂé?ﬂ =
3rd  Diagnos-
Laser harmonic tics Accelerating Structures B FEL
ypass i
5MeV 150 MeV 500 MeV 1.2GeV Brperiments
315m

Longitudinal phase space diagnostics at FLASH

Undulatol Quad: Quad: Kicker BPM BPM

Quad: TDS Quad:

beam directiot

Dipole

» Longitudinal phase space diagnostics in front of the undulators

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.




Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FLASH/DESY
The Free-Electron Laser in Hamburg (FLASH)

RF LPS diagnostics
RF Gun o Bunch G Bunch Stations ol SFLASH
ompressor ompressor v v ollimator
E@.&-{Jﬂé?ﬂ =
3rd  Diagnos-
Laser harmonic tics Accelerating Structures B FEL
ypass i
5MeV 150 MeV 500 MeV 1.2GeV Brperiments
315m

Longitudinal phase space diagnostics at FLASH

SASE Undulator )
[ v A Dipoles

OTR-1

&
10 deg beam direction

THz-spectrometer Quadrupole &
Steerer @&

OTR-2

» Longitudinal phase space diagnostics in front of the undulators

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.




Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FLASH/DESY
The Free-Electron Laser in Hamburg (FLASH)

RF LPS diagnostics
RF Gun Bunch Bunch Stations )
Compressor Compressor v v Collimator sFLASH
E,\é)..ﬂr-{%é?“ Undulators
=
3rd  Diagnos-
Laser harmonic tics Accelerating Structures 5 FEL
ypass ;
5MeV 150 MeV 500 MeV 1.2 GeV Experiments
315m

Longitudinal phase space diagnostics at FLASH

SASE Undulator )
A v e Dipoles

OTR-1

TDSN(LOLA)

%
beam direction

THz-spectrometer Quadrupole &

OTR-2
Steerer &3 Mirror .

» Longitudinal phase space diagnostics in front of the undulators
» Indispensable for beam dynamics studies in general

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 14/ 27



Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at FLASH/DESY
The Free-Electron Laser in Hamburg (FLASH)

RF LPS diagnostics
RF Gun o Bunch G Bunch Stations ol SFLASH
ompressor ompressor v v ollimator
E@.&-{Jﬂé?ﬂ =
3rd  Diagnos-
Laser harmonic tics Accelerating Structures B FEL
ypass i
5MeV 150 MeV 500 MeV 1.2GeV Brperiments
315m

Longitudinal phase space diagnostics at FLASH

SASE Undulator , OTR-1
H ¢ e :

1

TDS (LOLA)

Dipoles "

&
10 deg beam direction

THz-spectrometer Quadrupole &
Steerer @&

» Longitudinal phase space diagnostics in front of the undulators

» Indispensable for beam dynamics studies in general

» Longitudinal phase space linearizations with third-harmonic RF linearizer (3.9 GHz)
C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.




Longitudinal Phase Space Diagnostics at E-XFEL/DESY

European X-Ray Free Electron Laser (E-XFEL)

BCL sclnac BC2 FODO scinag
130 eV 4modes 600 Mev. £ 12 modies
o TS /
imoric paun
scinac | Laser FODO —
Tpie | Heder
Gun | 08

SASE 2

collmator
175GeV

F000 scliac

BC3
25GeV main linac
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Principle of Longitudinal Phase Space Diagnostics

Longitudinal Phase Space Diagnostics at E-XFEL/DESY

European X-Ray Free Electron Laser (E-XFEL)

BCL o001 sclnac

sclinac BC2 1’"”"”:0
130 mev 4 modules oMy <etion § 12modes
I i

scinac
3rd harmonic

sednac | Laser I g
modve |Heater  oraon
o I [

SASE 2

collmator
175GeV

R s
Fono i main linac

Longitudinal phase space diagnostics at E-XFEL

FODO section Energy

spectrometer
2 2 (local dump)

» Three setups for longitudinal phase space
measurements (including slice emittance)

» Higher-harmonic RF linearizer and a laser heater

TDS

» Proposal: Apply longitudinal phase space diagnostics
on individuals bunches of the train (septum magnet)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.



Longitudinal Phase Space Linearization at LCLS/SLAC

Linearization of the longitudinal phase space using an X-ba nd RF linearizer

X-band RF
acc. section

BC1

courtesy of P. Emma (SLAC)

Measurements

» Longitudinal phase space (off-crest):
X-band linearizer switched off

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs FEL 2011, Shanghai



Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at LCLS/SLAC

Linearization of the longitudinal phase space using an X-ba nd RF linearizer

X-band RF
acc. section

BC1

courtesy of P. Emma (SLAC) courtesy of P. Emma (SLAC)

Measurements

» Longitudinal phase space (off-crest):
X-band linearizer switched off

» Longitudinal phase space (off-crest):
X-band linearizer switched on

FEL 2011, Shanghai 16 /27

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.



Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at LCLS/SLAC

Linearization of the longitudinal phase space using an X-ba nd RF linearizer

X-band RF
acc. section

BC1

NATURE PHOTONICS Dot 10.1038/NPHOTON.2010.176 Measurements

P. Emma et al.
3 30

» Longitudinal phase space (off-crest):
X-band linearizer switched off
» Longitudinal phase space (off-crest):
X-band linearizer switched on
« | » Control of the bunch lengths allows control
e e ek e of the FEL photon pulse durations
(still a hot topic)

1 lo
S0 100 150 200 250 300 350 400
Electron FWHM bunch length (fs)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.



Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at FLASH/DESY

Measurement of the longitudinal phase space: third-harmon ic RF linearizer off
Longitudinal phase space Mean slice energy
> 4
'9 2
A0
7o)
\
-2
R S 5 =50
time (ps) Linearizer off time (ps)
Longitudinal bunch profile Slice energy spread
150 20
< I
*g 100 % o
5 50 6°
=5 . 0 5 =5 0 5
time (ps) time (ps)
C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.
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Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at FLASH/DESY

Measurement of the longitudinal phase space: third-harmon ic RF linearizer on

Longitudinal phase space Mean slice energy

5
i 0
=2
s -5
B — 0 .5 -5 0 5
time (ps) Linearizer on time (ps)
Longitudinal bunch profile Slice energy spread
150 20
< Y
45100 g 0
5 50 6°
0 0
-5 0 5 =5 0 5

time (ps) time (ps)
C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 17127



Control and Manipulation of the Longitudinal Phase Space

Longitudinal Phase Space Linearization at FLASH/DESY

Comparison: third-harmonic RF linearizer on/off

Longitudinal bunch profile

Mean slice energy

-=Linearizer off

4 -=Linearizer off
> 150 -e-[inearizer on -e-Linearizer on
< 7 2
Z 100 E
o =
= 0/.\; 0
3 50 ;

0
-5 0 5 5 5
time (ps)

0
time (ps)

Slice energy spread

-=Linearizer off » Compression in a magnetic bunch compressor:
-o-Linearizer on

c1l= (14 hRsg) + (h2Rse + Zh%Tsse)ti
hy,hy: first and second order energy chirp
Rse, Tsee: first and second oder longitudinal dispersion

» Eliminate time-dependency of C—1 by using a proper
hp, = higher-harmonic RF system (dual-frequency)

-5

0
time (ps)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 17127



Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor
TU .
2 1
708
:._0.6
S04
202
2
£ 0
0 2 4 6

energy chirp —h m™"

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.
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Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor

- Longitudinal phase space
IO 1 .

g

zost |

(5]

5.0.6

04

Q

§ 0.2

g 0

0 2 4 6 -10 0 10
energy chirp —h (m_l) time (ps)

Start with uncompressed bunches
ct=1

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 18/27



Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor

- Longitudinal phase space
(@] 3

: | 2

708

2056 T 0

g 2

S04 <=2

[} (2]

|

8 -4

E 0

0 2 4 6 -10 0 10
energy chirp —h (m_l) time (ps)

Start with uncompressed bunches
ct=1

End with compressed bunches (C—1 — 0)
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Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor
- Longitudinal phase space
IO 1 .
g
708
hael
éo.ﬁ o
0.4 l b
o (2]
§ 0.2
g 0 _18
0 2 4 6 -0.2 0.2

0
energy chirp —h (m™) time (ps)

Start with uncompressed bunches
ct=1

End with compressed bunches (C—1 — 0)
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Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor

Longitudinal phase space

. -1
ession C

0.8

£.0.6 l
g

S 0.4
2 0.2

S€ C

inve

0 2 4 . 6 -5 0 5
energy chirp —h (m™") time (ps)

Start with uncompressed bunches
ct=1

End with compressed bunches (C—1 — 0)
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Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor
- Longitudinal phase space
IO 1 .

g
0.8 5
éo.ﬁ l s
504 z 0
[} o
§ 0.2 5
g 0
0 2 4 6 -5 0 5

energy chirp —h (m™) time (ps)

Start with uncompressed bunches
ct=1

End with compressed bunches (C—1 — 0)
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Control and Manipulation of the Longitudinal Phase Space

Linear Compression using Dual-Frequency Linacs at FLASH/DESY

Measurements on linear bunch compression using only one bun ch compressor
- Longitudinal phase space
IO l .
g
208 5
éo.ﬁ o
€04 l - 0
) [Z=)
g 0.2] s
£ 0
0 2 4 6 -5 5

R 0
energy chirp —h (m 1) time (ps)

Longitudinal phase space

Start with uncompressed bunches
Cct=1
End with compressed bunches (C—1 — 0)

% Strong local compression due to collective
effects (not fully understood yet)

0.5

1 1.5
time (ps)
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Control and Manipulation of the Longitudinal Phase Space

FEL Operation with Non-linear/Linear Compression at FLASH/DESY
The old non-linear compression mode

Longitudinal phase space

10]

§/107
[

-10

-1 0
time (ps)

% Non-linear compression: sharp leading spike (small charge
fraction) with a long trailing tail

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 19/27



FEL Operation with Non-linear/Linear Compression at FLASH/DESY
FEL operation with new linear compression mode

Longitudinal phase space

Longitudinal phase space Longitudinal phase space
~30fs (r.m.s.) 6 "
5 ~150fs (r.m.s.)
o 3 5 4
= =) o 2
30 Z 9 o
. ) o 0
= — = 60fs ( ) ~ _
S (hm.S. i
-0.1 0 0.1
i -0.2 0 0.2 -04-02 0 02 04
time (ps) sismie () ,

time (ps)
% Non-linear compression: sharp leading spike (small charge
fraction) with a long trailing tail

+ Linear compression: flexible bunch lengths and shapes
(more regular but still complex)

s Linear compression: more FEL pulse energies (at least 4x)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 19/27



Control and Manipulation of the Longitudinal Phase Space

FEL Operation with Non-linear/Linear Compression at FLASH/DESY
FEL operation with new linear compression mode

Longitudinal phase space

Longitudinal phase space Longitudinal phase space
~30fs (rm.s.) 6 7
5 ~150fs (r.m.s.)
@ 5 5 4
— =) o 2
a0 el ¥ =
) o 0
= — = -~ ~60fs (rm.s.) ~ i
s (nm.s. i
o mas 02 0 02 0402 0 02 04
time (ps) time (ps)

Longitudinal bunch profile

% Non-linear compression: sharp leading spike (small charge
fraction) with a long trailing tail

+ Linear compression: flexible bunch lengths and shapes
(more regular but still complex)

s Linear compression: more FEL pulse energies (at least 4x)
Appearance of double-horns like at LCLS

J—
D

current (KA)
=4
in —

(=]

-04-02 0 02 04
time (ps)
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FEL Operation with Non-linear/Linear Compression at FLASH/DESY
FEL operation with new linear compression mode

Longitudinal phase space

Longitudinal phase space

Longitudinal phase space
~30fs (r.m.s.) 6 "
5 ~150fs (r.m.s.)
@ 5 5 4
= = o 2
a0 el ¥ =
w w O
- — = 60fs ( ) - -
s (rm.s. o
o mas 02 0 02 0402 0 02 04
time (ps) time (ps)
Longitudinal phase space * Non-linear compression: sharp leading spike (small charge
1op fraction) with a long trailing tail
o + Linear compression: flexible bunch lengths and shapes
g o (more regular but still complex)
w s Linear compression: more FEL pulse energies (at least 4x)
-10

Appearance of double-horns like at LCLS
—04 —O.Zﬁmé)(ps()).z 04 % Double-horns show some fragmentation

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.
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Control and Manipulation of the Longitudinal Phase Space

Tailoring the Longitudinal Phase Space for Wakefield Experiments

Beam-driven acceleration with drive and witness bunch

» Wakefield acceleration in dielectric structures using drive and witness
bunches

» Transformer ratio R = E]:% is limited to < 2 for symmetric current profiles

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 20/ 27



Control and Manipulation of the Longitudinal Phase Space

Tailoring the Longitudinal Phase Space for Wakefield Experiments

Beam-driven acceleration with drive and witness bunch

» Wakefield acceleration in dielectric structures using drive and witness
bunches

» Transformer ratio R = E]:% is limited to < 2 for symmetric current profiles

» Enhancement of the R by linearly ramped current profiles

Standard compression
T T

Ramped bunch 0.5 kA
T

20F T E 1500F N P a— = BT a—
_ 2 4000 Head |
M = 1000 1 LN <
2 o - 1 & 2 o 1 E
© 500 v 2001 1
g lead “ 3
200, A o . 2, o
02 0 o2 202 0 o2 05 0 05 055 05
Z (mm] Z (mm;
() mped bunch 2004 2™ Z (MMl amped bunch 1 kA Z (MM
4FT T ™ T T T T T T T T T T
_ 2000 g S ' 1000 1
= 1T = Head = 1= Head
=3 . - -
0 & 1001 1 2 or 1 & soor 1
© 2t 1 3 © 5l 1l 3
-4kl L L L L L 1 1 1 1 L 0 L L
0 1 - 0 0402 0 0204 %402 0 020.
z(mm) 2z (mm) z (mm) z (mm)

s Linearly ramped current profiles (from experiment) enables (from simulations) R > 6

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs.



Control and Manipulation of the Longitudinal Phase Space

Observations of Microbunching Instabilities in Time-domain

Linearly chirped bunches with intensity modulations at FLA SH/DESY and LCLS/SLAC

» Indication of microbunches
» Density modulations (FLASH)

» Energy modulations (LCLS)
chirped bunches — E « t

rel. energy deviation / 18

-200 -100

0 100 200
time (fs)
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Control and Manipulation of the Longitudinal Phase Space

Observations of Microbunching Instabilities in Time-domain

Linearly chirped bunches with intensity modulations at FLA SH/DESY and LCLS/SLAC

b
Q

» Indication of microbunches
» Density modulations (FLASH)

» Energy modulations (LCLS)
chirped bunches — E « t

o o 5

rel. energy deviation / 18
&

|
i
=

-200 -100 100 200

0
time (fs)

Tilted microbunches and energy spread increase at FLASH/DE ~ SY

» Indication and observation of:
tilted microbunches
increased slice energy spread

» Common observation since
operation with linear compression

rel. energy deviation / T8
o

rel. energy deviation / 16

-200 0 200 -1000 -500 0O 500 1000
time (fs) time (fs)
Better control of slice energy spread is needed, especially for seeded FELs

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai
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Control and Manipulation of the Longitudinal Phase Space

Mitigation of Coherent Optical Transition Radiation: Experiment
Compression instability: Charge  0.4nC

Non-dispersive section Diispersive-sestion

—~ 5 5
s 7
£ 0 A 2 0
\(U_/ ~
x _5 R s

-1 -10

= 0 2
time (ps) -2 0 2

time (ps)

Non-dispersive section dispersive section

3 3
< <
<9 <9
= 5
(o) (&)
E1 £
7 Y A
R 0 1 S 0 1
time (ps) time (ps)

% Strong discrepancy of current profiles between non-dispersive and dispersive section
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Control and Manipulation of the Longitudinal Phase Space

Mitigation of Coherent Optical Transition Radiation: Experiment
Compression instability: Charge  0.5nC

Non—dispersive section

Dispersive section

—_ 5

= ‘*,’O

o =

£ Z 0

® 5 = 5
19 0 2 19 "0 z

time (ps) time (ps)
Non—dispersive section dispersive section

ﬁ <

<2 <2

5 g

51 £

) Y e
0= 0 1 0 -1 0 1

time (ps)

time (ps)
% Local COTR emission spoils current profile measurement in non-dispersive section
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Mitigation of Coherent Optical Transition Radiation: Experiment

Dispersive section Dispersive section
OTR i Ce:YAG
5 5

T T

S 0 S 0 ;

® 5 ® 5 f

% 0 % 0
time (ps) time (ps)

% COTR is most probably generated by an ultra-short local spike
+ No indication for COTR in the dispersive section
Poster on mitigation of COTR in the non-dispersive section at FLASH (M. Yan et al. THPB16)

C. Behrens (DESY) The Longitudinal Phase Space at High-Gain FELs. FEL 2011, Shanghai 2227



Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching
Instabilities

» Transverse deflecting structures induce

i 1 L KL/2 0 Vi

energy spread (Panofsky-Wenzel theorem) v 0 1 K 0 y!

% beam heating (cf. laser-heater) t |~ |o 0 1 ol - til

» Energy spread is correlated, i.e. reversible Of K KL/2 K2L/6 1 i

% heat only where it's necessary
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Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching
Instabilities

» Transverse deflecting structures induce

i 1 L KL/2 0 Vi

energy spread (Panofsky-Wenzel theorem) v 0 1 K 0 y!

% beam heating (cf. laser-heater) t |~ |o 0 1 ol - til

» Energy spread is correlated, i.e. reversible Of K KL/2 K2L/6 1 i

% heat only where it's necessary

Reversible beam heating combining two transverse deflectin g structures (cavities)

Linacl TCAV1 BC TCAV2 Linac2
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» Transverse deflecting structures induce

Ve 1 L KL/2 0 Vi

energy spread (Panofsky-Wenzel theorem) v 0 1 K 0 y!

% beam heating (cf. laser-heater) t |~ |o 0 1 ol - til

» Energy spread is correlated, i.e. reversible Of K KL/2 K2L/6 1 i

% heat only where it's necessary

Reversible beam heating combining two transverse deflectin g structures (cavities)

Linacl TCAV1 BC TCAV2 Linac2

» Transport matrix: TCAV1 — TCAV2

(streaking L bending plane) a+ Léz + % % 0 K2L§R56
* KiRse: effective energy spread for b + K1K2Rse a~! 0 K2Rse
microbunching suppression K1Rse 0 1+hRss Rfa

% energy spread and spatial chirp 0 0 0

cancelation

1+-hRsg
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Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching

Instabilities
Demonstration setup with parameters comparable to a propos al at LBNL (NGLS)

Eg-point to point imaging in y-»

{B) | AB) s e SRORNC)
Linacl TCAV1 BC TCAV2 Linac2
» Longitudinal phase space: e
start with 1 keV slice energy spread & 20, =
compression C ~ 13 & (] ee—— 2
4 2 4
—40

AE (keV)

AE (keV)
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Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching
Instabilities
Demonstration setup with parameters comparable to a propos al at LBNL (NGLS)

(8), ! 1(B)., sommr Tt (€) i (d)

Linacl TCAV1 BC TCAV2 Linac2

» Longitudinal phase space:
start with 1 keV slice energy spread
compression of about C ~ 13

% Perfect cancelation of additional energy

i

o~
>
spread induced by TCAV1 i) —@—Before TCAV]
CSR: small differences in the tails A & After TCAV1
% 3 —A—Before TCAV2, scaled by 1/13
v —— After TCAV2, scaled by 1/13
—9 5 -1 -05 0.5 1 1.5
tfs
t
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Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching
Instabilities
Demonstration setup with parameters comparable to a propos al at LBNL (NGLS)

:n-point to point imaging in y-»

Bl | {B) s e BEGEET)
o
Linacl TCAV1 BC TCAV2 Linac2
» Longitudinal phase space: 400
start with 1 keV slice energy spread TCAV-heater off E
3

compression of about C ~ 13

% Perfect cancelation of additional energy
spread induced by TCAV1
CSR: small differences in the tails

% CSR-driven microbunching:
start with 5% density modulation

% TCAV-heater switched off —-400 0.2
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Special Applications of Longitudinal Phase Space Diagnostics

Reversible Electron Beam Heater for Suppression of Microbunching
Instabilities
Demonstration setup with parameters comparable to a propos al at LBNL (NGLS)

Eg-point to point imaging in y-»
) R () ~. (o) i (A

Ho —7—i —
Linacl TCAV1 BC TCAV2 Linac2
» Longitudinal phase space: 400
start with 1 keV slice energy spread TEAV . heater Gh
compression of about C ~ 13 2000
% Perfect cancelation of additional energy s
spread induced by TCAV1 g 0
CSR: small differences in the tails %
% CSR-driven microbunching: —200
start with 5% density modulation
TCAV-heater switched on -400
* -0.2 0.2

0
t(ps)

Longitudinal phase space diagnostics comes for free
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Special Applications of Longitudinal Phase Space Diagnostics
Time-resolved X-ray Diagnostics with Femtosecond Resolution in
ators

Free-Electron Lasers
Longitudinal phase space diagnostics right after the undul

2 Im
T (t streak Dipole
<=IVA-88-—= g
Undulator X-band RF deflector ’}% Tgﬂ
e Ay=90" 0 g
Ba B,
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Special Applications of Longitudinal Phase Space Diagnostics

Time-resolved X-ray Diagnostics with Femtosecond Resolution in
Free-Electron Lasers

Longitudinal phase space diagnostics right after the undul ators
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Special Applications of Longitudinal Phase Space Diagnostics

Time-resolved X-ray Diagnostics with Femtosecond Resolution in
Free-Electron Lasers

Longitudinal phase space diagnostics right after the undul ators
2 Im
T (1 streak Dipole
==-{IlvAm- 2o = g
Undulator X-band RF deflector gﬁ
’/% ]
) Ayr=90° © N g
P B
FEL: Genesis -> Tracking: elegant
===FEL simulation i
—(t,AE) after undulator » Time-dependent energy loss and spread
15 —(.x,y) at screen due to FEL process

» Correlation with temporal FEL photon pulse
profile (replica of FEL photon pulse)

X-ray power (GW)
w o
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Special Applications of Longitudinal Phase Space Diagnostics

Time-resolved X-ray Diagnostics with Femtosecond Resolution in
Free-Electron Lasers

Longitudinal phase space diagnostics right after the undul ators
2 Im RE
T (’ streak Dipole
Undulator X-band RF deflector 2 gﬁ
%, g
| Ayr=90° 3 TE
P 1
Bu Vi3

FEL: Genesis -> Tracking: elegant

===FEL simulation i
—(t,AE) after undulator » Time-dependent energy loss and spread
15 ——(x.y) at screen due to FEL process

» Correlation with temporal FEL photon pulse
profile (replica of FEL photon pulse)

% All features of high-resolution longitudinal
phase space diagnostics (electrons beams):
independent of FEL wavelength

X-ray power (GW)
w o

0 high-dynamic range
=20 0 20 single-shot temporal profiles
time (fs)
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Summary and Conclusions

Longitudinal phase space diagnostics based on TDS and energ y spectrometer
% Provide useful information on electron beams
* Both with high resolution, high dynamic range, and single-shot capability
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Control of the longitudinal phase space by dual-frequency | inear accelerators

* Higher harmonic RF systems for longitudinal phase space linearizations
linear compression
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Summary and Conclusions

Longitudinal phase space diagnostics based on TDS and energ y spectrometer
% Provide useful information on electron beams
* Both with high resolution, high dynamic range, and single-shot capability
Mitigation of coherent radiation effects of screen based diagnostics, e.g. COTR
* Be aware of systematic errors and the definition and meaning of resolution

Control of the longitudinal phase space by dual-frequency | inear accelerators

* Higher harmonic RF systems for longitudinal phase space linearizations
linear compression

* Improvement of FEL performance in terms of pulse length tunabilty and intensity
* Flexible longitudinal pulse shaping in general (e.g. for wakefield experiments)

Special applications of longitudinal phase space diagnost ics
* May provide useful information on X-ray pulses
% Reversible Electron Beam Heater for Suppression of Microbunching Instabilities
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