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Why Slippage-dominant Superradiant FELs?

SP|Seedfd FEK' % .77 SASEFEL

O Large Statistic fluctuations
O Poor temporal coherence

rmeaw | LPSeeded FEL
Many applications requiring improved temporal coherence

Certain applications preferring spectral tunability
Seeding with external laser pulse:

> steady-state regime (long pulse (LP))
> slippage-dominant superradiant regime (short pulse (SP))

Both LP and SP have
= Fully coherent FEL pulse
=  Well-defined timing
= Less undulators to reach saturation
Except
= LP has no spectral tunability || SP has spectral tunability within seed bandwidth



Long pulse seeded FEL
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] Steady state — external seed covering entire e- bunch Lgggp >> L.
1 External seed initiating FEL process
 Coherent radiation at A;.eq amplified to saturation in a radiator
1 No spectral tunability



Slippage-dominant Superradiance FEL amplifier
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O Slippage-dominant superradiance (SDSP) — Lsgep = L (=A/4mp)<<L,.;

Lseep <<Ls (=AN,).
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O External seed, provided by spectral overlap between AAgeep and AA,, coherently
bunching electrons in the slippage regime

(1 Coherent radiation at SASE A..



Promises
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 In SDSR regime, seed pulse moving at v,=c

1 Spectral tunability limited by AAscp. As an example,
» Pseed=1MW, 14 fs, AAseep=75nm, coherent radiation A, in the range 678 to 909nm,
6E=i7.3%.

O Experiment in SDL— P,..;=1-10MW, seed pulse 140 fs, AAgezp=7.5nm, Ageep
=793.5nm, tuning range 778 to 809nm, &:=%1%.



SDSR FEL: Promises and limitations

d Promises
» Bunching AND Gain
» Varying E,. -> Tunable A,
» Transverse and longitudinal coherences

] Limitations
» Spectral tuning range limited by AAgsgep (>> AA,)
> FEL efficiency scaled by the slippage in a radiator
> Less effective in short A, regime



SDSR FEL experiment at NSLS SDL
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O To-do-list
> Compress e- bunch down to ~1ps (FWHM), at E=101.75MeV, Io.,,=300A, £ =4.5um
> Compress seed pulse to Fourier transform limited 140fs (FWHM)
> Overlap e- beam and seed laser transversely in the radiator
> Scan delay stage to adjust laser timing until the seed enhanced FEL output is observed
> FROG, Joule meter, Spectrometer

O What to measure?
> The evolution of longitudinal phase space using FROG

> Output spectrum versus e- beam energy
> Pulse energy versus e- beam energy



FROG data in good agreement with simulation
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Spectral signal 5,20.91%, Ecgeg=0.1p4
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Summary

Slippage-dominant superradiance FEL verified
» Longitudinal coherence observed
» Spectral tunability within seed bandwidth verified
> All the experimental observations well explained with
slippage superradiance theory
(1 0ngoing work and future plan:

> Analytical calculation of bunching factor in broadband seed
case confirmed by Perseo simulation --- collaborate with
Luca Giannessi

» Exploring short wavelength limit



FEL 1-D theory explanation
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