First Demonstration of a Slippagedominant Superradiant Free-electron Laser Amplifier

Xi Yang for NSLS SDL team at BNL August-25-2011

Why Slippage-dominant Superradiant FELs?

- □ Large Statistic fluctuations
- ❑ Poor temporal coherence

- Except
 - LP has no spectral tunability || SP has spectral tunability within seed bandwidth

Long pulse seeded FEL

□ Steady state — external seed covering entire e- bunch $L_{SEED} >> L_{e}$. □ External seed initiating FEL process

- $\hfill\square$ Coherent radiation at λ_{seed} amplified to saturation in a radiator
- □ No spectral tunability

Slippage-dominant Superradiance FEL amplifier

- □ Slippage-dominant superradiance (SDSP) $L_{SEED} \approx L_c (=\lambda_r/4\pi\rho) << L_{e-};$ $L_{SEED} << L_s (=\lambda_r N_r).$
- **Ξ** External seed, provided by spectral overlap between $\Delta \lambda_{SEED}$ and $\Delta \lambda_r$, coherently bunching electrons in the slippage regime
- **\Box** Coherent radiation at SASE λ_r .

Promises

- □ In SDSR regime, seed pulse moving at $v_g \approx c$
- \Box Spectral tunability limited by $\Delta \lambda_{SEED}$. As an example,
 - > P_{seed} =1MW, 14 fs, $\Delta \lambda_{SEED}$ =75nm, coherent radiation λ_r in the range 678 to 909nm, δ_E =±7.3%.
- **Experiment in SDL** P_{seed}=1-10MW, seed pulse 140 fs, $\Delta\lambda_{SEED}$ =7.5nm, λ_{SEED} =793.5nm, tuning range 778 to 809nm, δ_E=±1%.

SDSR FEL: Promises and limitations

Promises

Bunching AND Gain

> Varying $E_{e_{-}}$ -> Tunable λ_{r}

Transverse and longitudinal coherences

Limitations

> Spectral tuning range limited by $\Delta \lambda_{SEED}$ (>> $\Delta \lambda_r$)

- FEL efficiency scaled by the slippage in a radiator
- > Less effective in short λ_r regime

SDSR FEL experiment at NSLS SDL

To-do-list

- > Compress e- bunch down to ~1ps (FWHM), at $E\approx 101.75$ MeV, $I_{peak}\approx 300$ A, $\epsilon\approx 4.5$ μ m
- Compress seed pulse to Fourier transform limited 140fs (FWHM)
- > Overlap e- beam and seed laser transversely in the radiator
- > Scan delay stage to adjust laser timing until the seed enhanced FEL output is observed
- > FROG, Joule meter, Spectrometer

What to measure?

- > The evolution of longitudinal phase space using FROG
- Output spectrum versus e- beam energy
- Pulse energy versus e- beam energy

FROG data in good agreement with simulation

δ_e=0.91%, *E*_{SEED}=0.1µJ

Variation of FEL output with beam energy

δ_e=0.91% *E*_{SEED}=0.1μJ

Summary

□Slippage-dominant superradiance FEL verified

- Longitudinal coherence observed
- Spectral tunability within seed bandwidth verified
- All the experimental observations well explained with slippage superradiance theory
- **Ongoing work and future plan:**
 - Analytical calculation of bunching factor in broadband seed case confirmed by Perseo simulation --- collaborate with Luca Giannessi
 - Exploring short wavelength limit

FEL 1-D theory explanation

δ= δ_E/ρ ρ=3·10⁻³