Advanced beam dynamics experiments at SPARC

Alberto Bacci
on be half the SPARC group
SPARC layout

VB cavity for low energy bunch compression and solenoids to emittance compensation

photocathode laser room

Gun 1.6 SW 130MV/m

linac - TW S-band

New beam lines under installation: Thoson – PWFA – LWFA

FLAME laser input line

6 unadulators

<table>
<thead>
<tr>
<th>Period</th>
<th>2.8 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undulator length</td>
<td>2.156 m</td>
</tr>
<tr>
<td>No of Periods</td>
<td>77</td>
</tr>
<tr>
<td>Gap (nom./min/max)</td>
<td>0.958 / 0.6 / 2.5 cm</td>
</tr>
<tr>
<td>K (nom./max/min)</td>
<td>2.145 / 3.2 / 0.38</td>
</tr>
<tr>
<td>Remanent field</td>
<td>1.31 T</td>
</tr>
<tr>
<td>Blocks per period</td>
<td>4</td>
</tr>
<tr>
<td>Block size (h x l x w)</td>
<td>2 x 0.7 x 5 cm</td>
</tr>
</tbody>
</table>
SPARC Velocity Bunching applications

Progress towards high brightness beam:
- Gun RF pulse shaping 130MV/m
- VB time jitters <100fs
New RF pulse shaping for Gun feeding

Goals:
- Increase the gun accelerating gradient
- Maintain the residual phase noise, respect to the main oscillator, below 100fs
- Have a breakdown rate as low as possible

Solution:
- In the first 3us the RF level is kept as low as possible to make the PLL (Phase Locked Loop) working
- The RF is brought to the maximum level in the last 0.8 us

Before (11 MW - 112 MV/m – 4.7 MeV)

Now (14 MW - 130MV/m – 6.2 MeV)

M. Bellaveglia, M. Ferrario, A. Gallo, RF pulse shaping optimization to drive low emittance RF photoinjector, to be published
Laser Comb: beam echo generation of a train bunches

- M. Ferrario, M. Boscolo et al., Int. J. of Mod. Phys. B, 2006 (Taipei 05 Workshop)
A train of laser pulses at the cathode by birefringent crystal

The technique used for this purpose relies on a birefringent crystal, where the input pulse is decomposed in two orthogonally polarized pulses (ordinary, extraordinary) with a time separation proportional to the crystal length.

Different crystal thickness are available (10.353 mm in this case).

Putting more crystals, one can generate bunch trains (e.g. 4 bunches).

The intensity along the pulse train can be modulated (e.g. PWFA)

\[\Delta \tau = \left(\frac{1}{v_{go}} - \frac{1}{v_{ge}} \right) L_1 \]
Experimental results
Systematic analysis by simulations

Free parameters:
- Gun injection phase
- VB injection phase
- Bz field Gun Solenoid
- Bz field $T_{w_{\text{cavity}}} \text{N. 1}

Initial parameters:
- $T_{\text{separation}}$ at chathode = 4.27 ps
- $Q = 80 \text{ pC} + 80 \text{ pC}$
- $\sigma_x = \sigma_y = 400 \mu m$
- $T_{w_{\text{cavity}}} \text{ II–III on crest}

Final Condition:
- $T_{\text{separation}} \approx 1 \text{ ps}$
- current I = current II
- Minimum total rms ϵ

The minimum total projected emittance (measurable) corresponds to a similar behaviour of both sub-bunches (emittance and current).
Two bunches train characterization $Q_t=166$ pC (92+78) on crest

Remarkable agreement

$\varepsilon_{x,y}(100\%) = 0.8,1.1$ mm-mrad, E_{spread} for each pulse $< 0.1\%$ (170 MeV)

$\varepsilon_{x,y} (90\%) = 0.5,0.5$ mm-mrad, $\sigma t_1 \approx \sigma t_2 \approx 1$ ps

Maximum compression VB phase -90.4

$T_{\text{sep.}} = 4.27$ ps

$\sigma_{t}-\text{pulses} \approx 150$ fs

$\sigma_x = \sigma_y = 400$ μm

$\sigma t=140$ fs

$\varepsilon_{x,y}(100\%) = 4.5,3.3$ mm-rad

$\varepsilon_{x,y} (90\%) = 3.6,2.6$ mm-rad

$E_{\text{spread}} 0.4\%$ and 0.25% (110 MeV)

Energy separation ≈ 1.5 MeV
Two bunches train characterization

Over-compression VB phase -95.6

\[\sigma t \ I = 140 \text{ fs}, \sigma t \ II = 270 \text{ fs} \]

\[T_{\text{separation}} \approx 0.8 \text{ ps} \]

\[\varepsilon_{x,y}(100\%) = 6.2, 4.4 \text{ mm-rad} \]

\[\varepsilon_{x,y}(90\%) = 5.8, 4.0 \text{ mm-rad} \]

Energy separation \(\approx 1.2 \text{ MeV} \)

<table>
<thead>
<tr>
<th></th>
<th>MEASUREMENTS</th>
<th>SIMULATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length (ps)</td>
<td>0.3998 ((\sigma/\sqrt{10}=0.0098))</td>
<td>0.3995</td>
</tr>
<tr>
<td>Time Separation (ps)</td>
<td>0.789 ((\sigma/\sqrt{10}=0.061))</td>
<td>0.7743</td>
</tr>
<tr>
<td>Energy Separation(MeV)</td>
<td>1.192 ((\sigma/\sqrt{10}=0.056))</td>
<td>1.4</td>
</tr>
<tr>
<td>Bunch 1 length (ps)</td>
<td><0.21 (res.)</td>
<td>0.0963</td>
</tr>
<tr>
<td>Bunch2 length (ps)</td>
<td>0.172 ((\sigma/\sqrt{10}=0.022))</td>
<td>0.1108</td>
</tr>
</tbody>
</table>
FEL Comb at SPARC (two bunches train)

\[dt = \frac{\lambda^2}{\Delta \lambda} \]

From the spectrum \(dt \approx 0.615 \text{ ps} \); comparable with data

\[<dt> = 0.8 \text{ ps} \]
Four pulses COMB structure (200 pC)

Laser pulse @ gun cathode

whole train length ≈ 9 ps
σ_t (per spike) ≈ 200 fs
Click to play movie
4 comb pulses and long phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection.
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
4 comb pulses and long. phase space rotation
4 comb pulses and long phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
4 comb pulses and long. phase space rotation
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection.
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
4 comb pulses and long. phase space rotation

Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection
Over-compression region: The sub-bunches are well separated; their distance can be controlled by VB phase injection.
THz radiation can be easily produced by means of CTR

It is difficult to put high charge in sub-ps bunches

A laser comb structure in the longitudinal laser profile can solve this problem
The SPARC THz source

Silicon Aluminated screen (40 nm coating)

CTR (SiO\textsubscript{2}) radiator

quartz window

90° off-axis parabolic mirrors

electron beam vacuum pipe

by Fourier trasforming

CTR spectrum

Interferogram

Martin-Puplet interferometer

- Operating spectral range: 100 GHz-5 THz
- It allows to reconstruct the beam profile
- First test with pyroelectric detector; foreseen Golay cell or bolometers

Interferogram spectrum

by Fourier transforming

Interferogram
The SPARC THz source

Operating spectral range: 100 GHz-5 THz
- It allows to reconstruct the beam profile
- First test with pyroelectric detector; foreseen Golay cell or bolometers

Martin-Puplet interferometer

Silicon Aluminated screen (40 nm coating)

CTR (SiO₂) radiator

CTR (SiO₂)

quartz window

90° off-axis parabolic mirrors

detector

filters/polarizer

by Fourier trasforming

CTR spectrum

Interferogram

CTR spectrum

Interferogram

by Fourier transformation
Narrow THz radiation measured

Interferogram for bunches train show $2N-1$ peaks (inter-distance = sub-bunches distance)

\Rightarrow Radiation spectrum is strongly suppressed outside the comb rep. frequency
Conclusion

• The SPARC linac has improved the machine stability and the gun gradient

• We have demonstrated, from experimental point of view, that one can control pulse spacing, length, current and energy separation by properly setting the accelerator.

• A very good agreement with simulations
Thanks for your attention