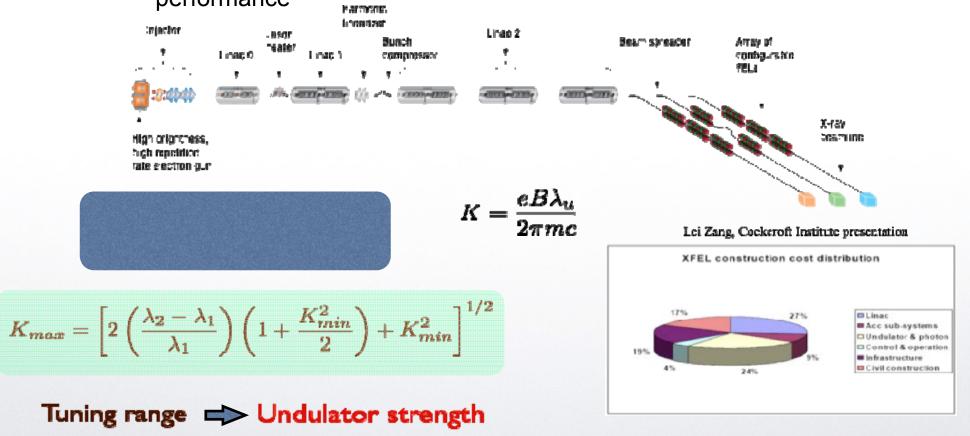


Development of Superconducting Undulators

Soren Prestemon Lawrence Berkeley National Laboratory

• LBNL contributors

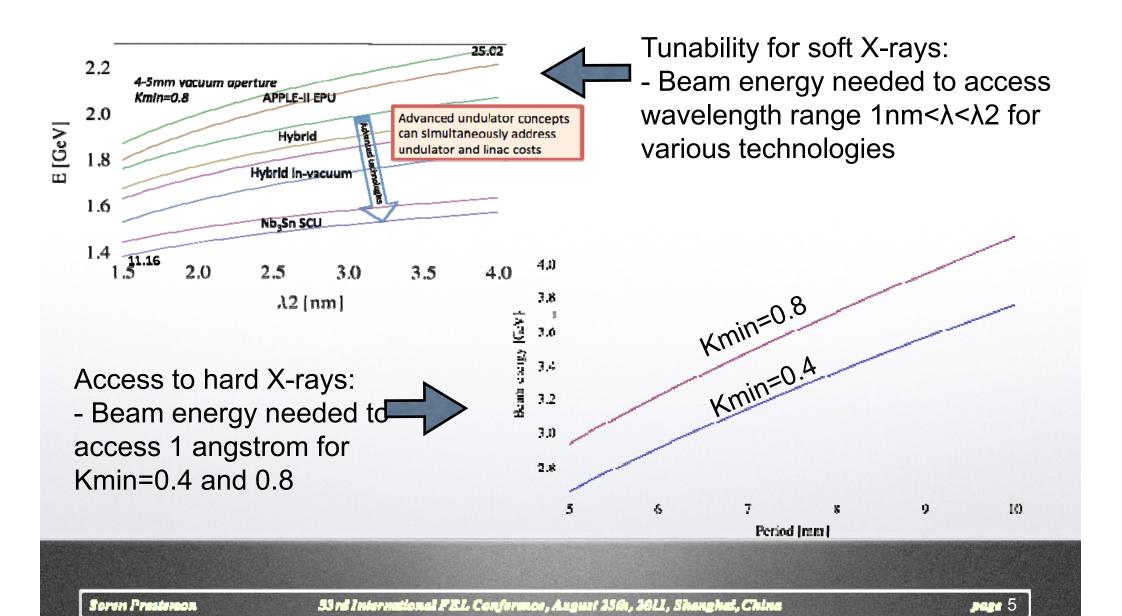
- Magnetic Systems
 - Ross Schlueter, Steve Marks, Diego Arbelaez, Arnaud Madur, Torsten Koettig, Karl Petermann
- Superconducting Magnet Program
 - ✓ Daniel Dietderich, Shlomo Caspi


Outline

- Introduction
- Undulator development status:
 - ✓ Historical
 - ✓ Current
- Technical developments
 - Current developments and areas that need further research
- Future directions

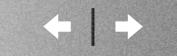
Introduction

 Undulator technology plays a critical role in FEL design and performance


Soren Prestenson

53 rd International FEL Conference, August 25th, 2011, Shanghal, China

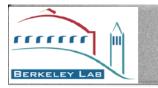
page 4



Motivation: FEL's

SCU's: Motivation

Performance dominates in the >10mm period range


- ✓ Next closest competitor are cryogenic in-vacuum PM devices
- ✓ Expect SCU's to be cheaper (ultimately)
 - No moving parts, material cheaper; cryogenics more expensive, but probably not significant if part of large SRF-linac facility

• Performance appears strong in the <10mm period regime

- Outperforms hybrid PM devices
- ✓ Need to:
 - Demonstrate performance
 - Understand and control tolerances

• Maturity compared to other technologies

- ✓ PM>hybrid>in-vac.hybrid>CIVID>NbTi>Nb3Sn>HTS>SRF>plasma
- But... measured SCU(NbTi) devices as APS and ANKA suggest SCU(NbTi) is in a close race with CIVID (excellent phase errors with SCU's)

Superconducting Undulator Development: Historical review

- First undulators were superconducting!
 - ✓ 1975, undulator for FEL experiment at HEPL, Stanford
 - ✓ 1979, undulator on ACO
 - ✓ 1979, 3.5T wiggler for VEPP

IEEE Transactions on Nuclear Science, Vol. NS-28, No. 3, June 1981

GAIN MEASUREMENT ON THE ACD STORAGE RING LASER

D.A.G. Deacon^a, J.M.J. Madey^a, K.E. Robinson^a, C. Bazin^b, M. Billardon^c, P. Elleaune^d, Y. Farge, J.M. Ortéga^c, Y. Pétroff, M.F. Velghe^e.

LUKE, Bâtiment 209C, Université de Paris-Sud, 91405 ORSAY, France

 a) High Energy Physics Lab, Stanford University, Stanford CA 94305 USA
b) Laboratoire de l'Accélérateur Linéaire, Mâtiment 200, Université de Paris-Sud, 91405 ORSAY, France

- c) Ecole Supérieure de Physique et de Chimie, 10, Rue Vauquelin, 75231 PARIS CEDEX 05, France
- d) Département de Physico-Chimie, Service de Photophysique, CEN Saclay, 91190 GIF SUR VVETTE, France
- e) Laboratoire de Photophysique Moléculaire, Bât. 210, Université de París-Sud. 91405 ORSAY, France

Superconducting helically wound magnet for the free-electron laser Rev. Sci. Instr., 1979

L. R. Ellas and J. M. Madley Mak Knorge Physics Laboratory. Straford Electority, Stoopford, California 16061 (Records 12 April 1979; accepted for pattorators 18 May 1979)

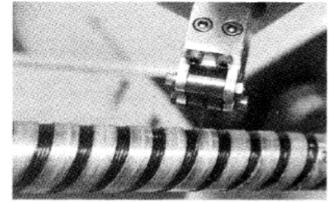


FIG. 5. Wire winding tool and partially completed magnet.

Karlsruhe/Mainz 1998 3.8mm period device

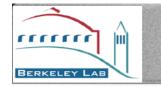
53 rd International FEL Conference, August 25th, 2011, Shanghal, China

Page 7

Location	λ [mm]	Year	Gap (mag.) [mm]	Gap (vac.) [mm]	Vac. wall temp. [K]	B [T]	Comments
Karlsruhe/Mainz	3.8	1998		2			
Anka/Accel	14	2003	5		4.2		Variable gap for beam-filling
NSLS	26	1994	8.6			0.82	(see NSLS und. Below)
NSLS	18	1994	8.6			0.54	Attained field; attempted shimming with additional Sc circuits; problems with complicated field quality controls, cryogenics
SRRC	10	2000	2			1.39	
Firfel	10		2		4.2	1.07	
BNL (HGFEL)	18		8			0.54	
BNL (ATF)	8.8		4.4			0.66	

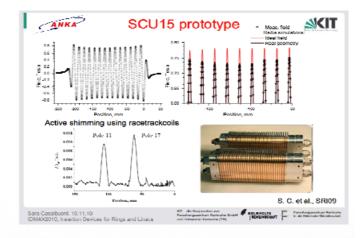
SCU's: Current status

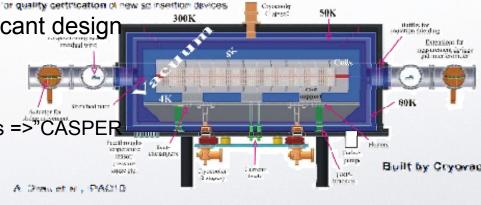
NbTi Prototypes – full scale and subscale, demonstrate performance meets specs


- ✓ Phase errors quite low -Key is excellent quality control during fab.
- ✓ No real implementation of shimming ; except LBNL proof of principle
- Some variation from device to device; source not evident
- Implementation of Nb3Sn at LBNL; only tentatively investigated elsewhere
 - Would benefit from guidance on material and fabrication issues
 - Working with conductor vendors for optimal conductors
- Cryogenics:
 - ✓ Generally using cryocoolers, either with recondensers or via conduction
 - General uncertainty on heat load; evidence of unknown source; multiple calorimeters being designed and fabricated

Next steps

✓ First truly successful operation in a storage ring (Anka / APS / other?) needed

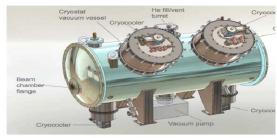

R&D areas


- ✓ Need to develop fully functioning measurement system
- ✓ Need fully developed shimming approach
- ✓ Need to develop sub-10mm period devices

- ANKA:
 - Steadily developing SCU's with industrial partners
 - ✓ First devices on ring

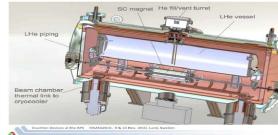
- initially had performance issues, but getting better
- providing critical input into design/implementation issues
- ✓ More devices being designed/prototyped/built:
 - 15mm period device for NANO beamline
 - → 15/45mm period undulator/wiggler device
- ring requires variable gap device => significant design implications
- ✓ R&D:
 - Improved measurements for shimming analysis =>"CASPE II"
 - understand beam heat loads => "COLDDIAG"
 - test performance of devices on the ring

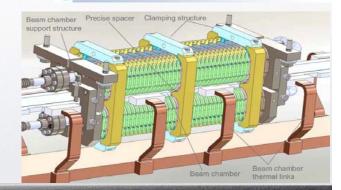
53 rd International FEL Conference, August 25th, 2011, Shenghal, China


____10

- Y. Ivanyushenkov Short-period undulator workshop, LBNL, 2011
- APS:
 - ✓ Developing SCU's as a key component of an ongoing upgrade
 - ✓ Conservative, systematic approach being pursued
 - ✓ Addressing technical issues:
 - goal of having a first device in the ring within 1-2 years, and many (~8) more over the next few years

Prototype Parameter	1	2	3	4	5	Assembly 1	Assembly 2
No of poles	10	10	10	10	10	42	42
Core/ pole material	AI/AI	Iron/Iron	AI/AI	AI/AI	AI/AI	Iron /Iron	Al/Iron
LHe test status	Tested	Tested	Used for impregnation study	Used for impregnation study	Used for impregnation study	Tested	Tested
Peak field						0.65 T @ 500 A	0.61 T @ 500 A
Phase error*						7.1°@ 500 A 3.3°@ 200 A	5.0° @ 500 A 3.0° @ 200 A
Spectral performance (phase errors included)						>75% of ideal in 3 rd harmonic (60 keV); >55% of ideal in 5 th harmonic (100 keV)	


Cryostat



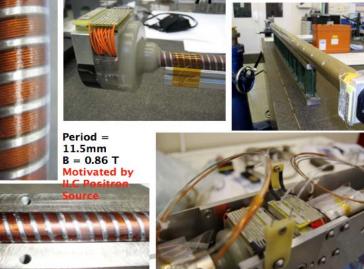
Cryostat is 2.06 m long, so will fit in half of the straight section Intertion Devices at the APS IDMAX2010, 9 B 10 Nov. 2010, Lund, Sweden

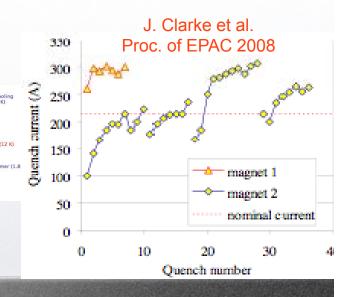
Cryostat structure

Cryostat contains cold mass with support structure, radiation shi cryocoolers, and current lead assemblies.

53 rd International FEL Conference, August 25th, 2011, Shanghal, China

• Daresbury:

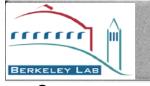

111111


BERKELEY

J. Clarke

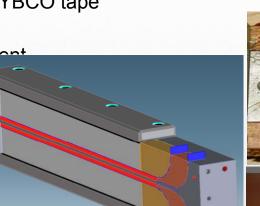
Short-period undulator workshop, LBNL, 2011

- Significant development effort in bifilar helical undulator
 - focus on ILC positron production mechanism
 - numerous prototypes built and tested
 - full-length device built and tested met field-strength requirement
 - no local field correction
- Planar SCU's under development:
 - → 15mm period, 2m device for Diamond
 - NbTi, Supercon Inc., Cu:SC=0.9:1, rectangu
 - 5mm vac. gap (12K chamber)
 - 1.8K operation
 - R&D plan:
 - Assemble the turret test rig and confirm the cooling powers expected are achieved
 - Construct a short magnet array to confirm tolerances are achieved vertically test
 - If not, incorporate correction scheme?
 - Construct full length magnet
 - Assemble and test complete undulator
 - Install into Diamond (replace existing in- vac undulator), confirm cryo and magnetic performance



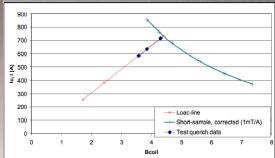
53 rd International FEL Conference, August 25th, 2011, Shanghal, China

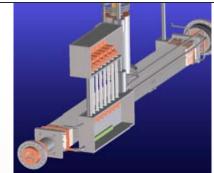


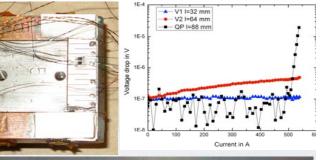


← | →

BNL:

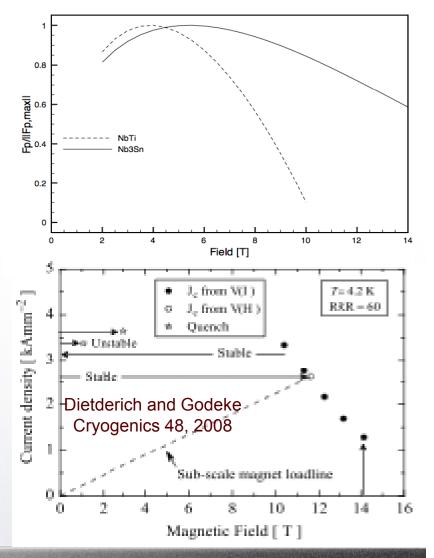

- ✓ Prototype planar SCU's using Nb₃Sn
 - → 30mm and two 14.5mm period prototypes
- ✓ Demonstration of shimming concept
- Demonstration of cold-switching concept
 - → allows +/-/0 current to a shim
 - will allow fast shimming of a device
 - → will allow complex period-doubling electrical circuits
- ✓ Development of an SC-EPU concept
- Development and testing of pulsed wire measurement system
- Development and component testing of YBCO tape undulator concept
- Collaboration with SINAP on image-current calorimetry





Fotos an Next Generation of Insertion Devices

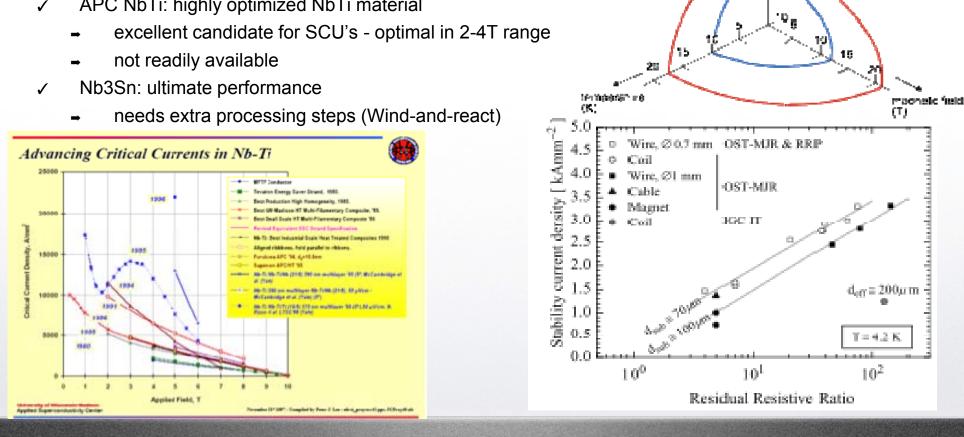
Theylan its Improxi-


53 rd International FEL Conference, August 25th, 2011, Shanghal, China

Technology developments: 1: Conductors

← | →

- The superconductor properties are the essential ingredient for high performance SCU's
 - ✓ Performance dictated by Jav => need high Jc
 - Need to minimize insulation and "stabilizer" crosssections
 - ✓ For most undulator applications 2T<Bmax<4T</p>
 - Leverage materials with strong pinning strength in this field range
 - Need to avoid low-field instabilities =>need small "filaments"



page14

Conductors: LTS

- NbTi: workhorse superconductor for Bmax<~9T 1
 - typically Jc is "low", Cu stabilizer fraction "high"
 - For SCU's, want Cu:Sc~1:1 or 1.3:1
- APC NbTi: highly optimized NbTi material 1

111111

BERKELEY

Imi

53 rd International FEL Conference, August 25th, 2011, Shanghel, China

noment density. (Veni) 10

entical J F-1

ur (see

Arno Giodola

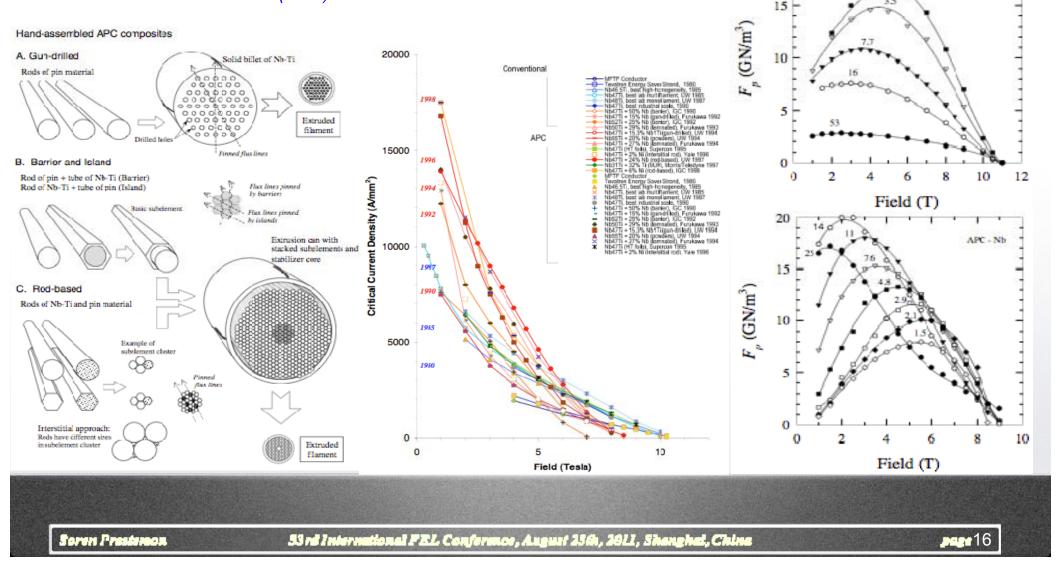
Nb án

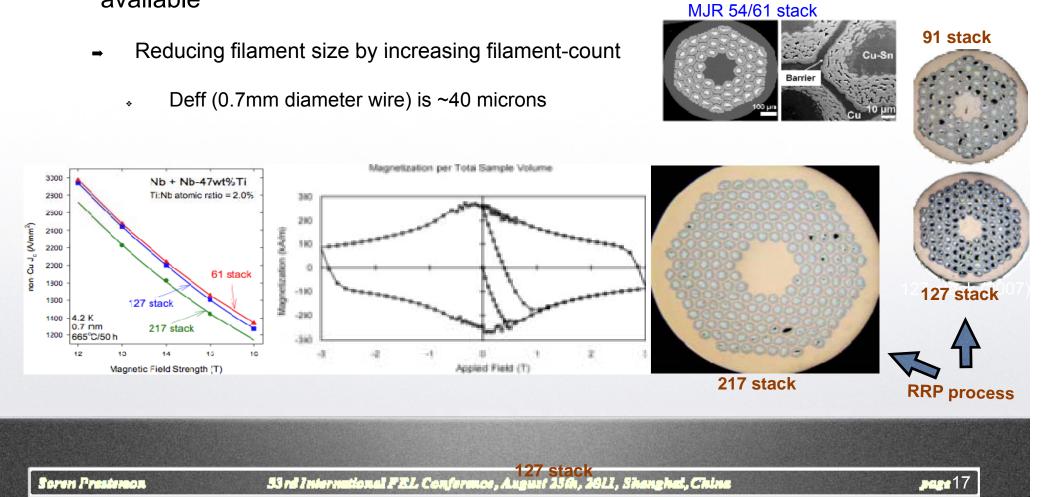
NR-Til

agreenel communication

20

Nb48Ti


1.7


L. D. Cooley and L. R. Motowidlo, "Advances in high-field superconducting composites by addition of artificial pinning centres to niobium–titanium" SUST 12 (1999)

111111

BERKELEY LAB

Imi

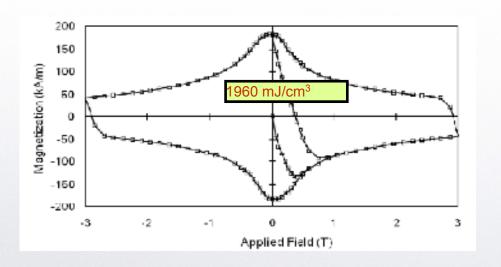
• Oxford Instruments

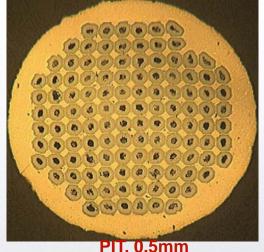
.....

BERKELEY

✓ Highest Jc Nb₃Sn material commercially available

D. R. Dietderich and A. Godeke

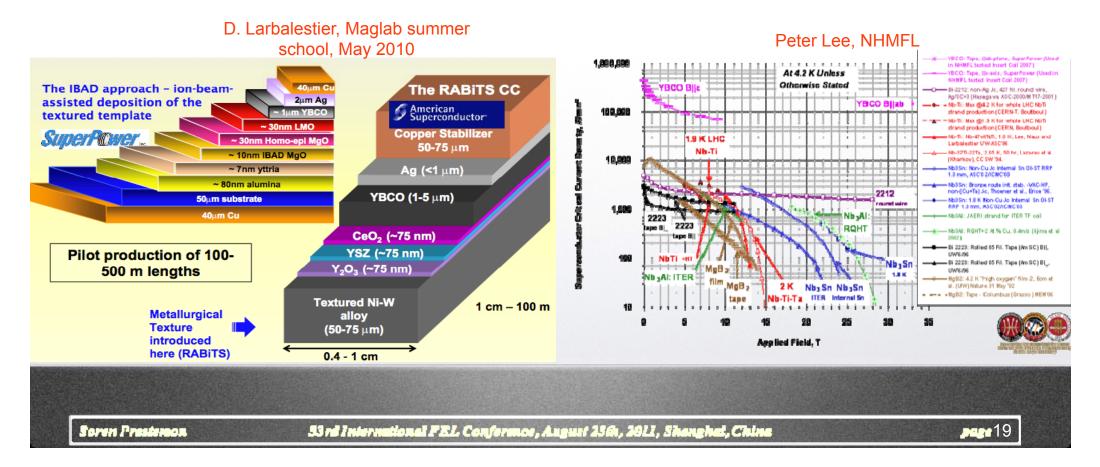

Cryogenics 48 (2008)


Conductors: Example Nb₃Sn RRP

Supramagnetics

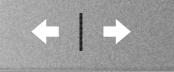
Conductor Design	Wire Diameter (mm)	Filament Diameter (µm)	Temp. (°C)	non-Cu J₀ (A/mm²)	Critical Current (Amps)	∑irr (%)	RRR	non-Cu ac Losses (mJ/cm ³)
120 OCT	0.5	31	675	1,988 @12T	191	0.58	-	-
u	0.759	47	650	2,649 @11.5T	588	-	48.5	-
"	0.5	31	625	2,617 @12T	251	0.74	-	1960

111111

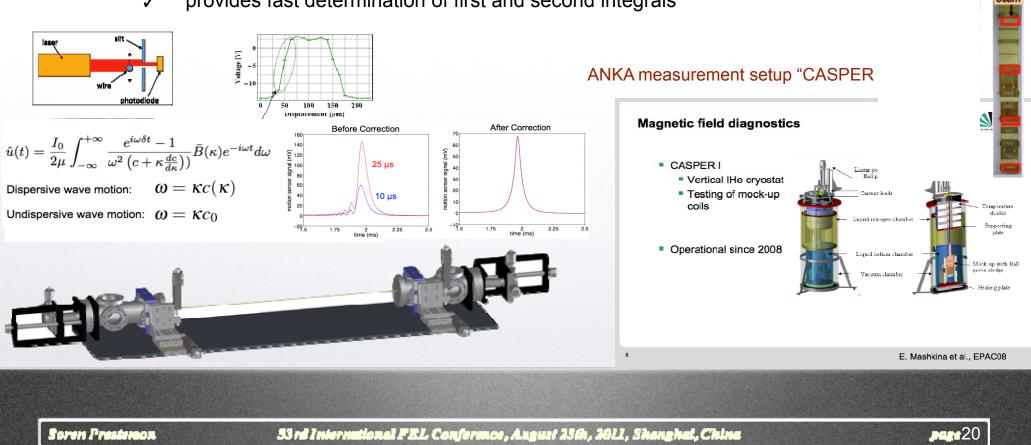

BERKELEY LAB

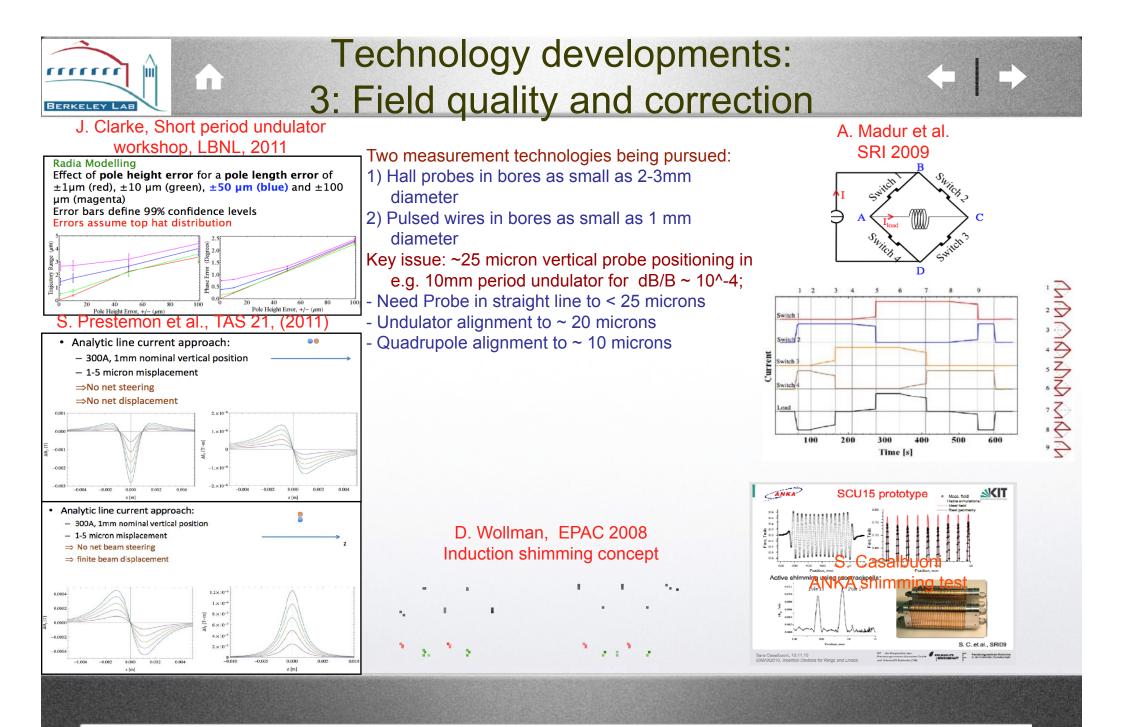
(III)

53 rd International FEL Conference, August 25th, 2011, Shanghel, China



- - ✓ carry supercurrent at temperatures as high as ~100K, or at high field (up to 100T or higher)
 - ✓ Current densities low at "high" temperature (e.g. 77K LN)
 - ✓ Current density high at 4.2K (LHe)



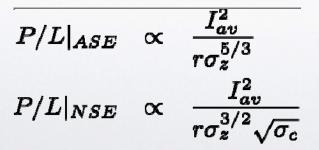

Technology developments: 2: Measurements

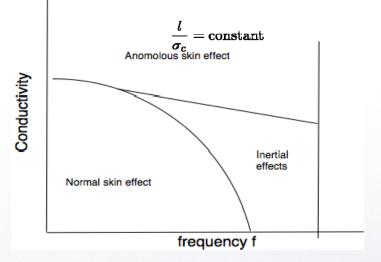
Hall propo

- Traditional Hall probe granite tables not applicable to SCU's
 - Modified Hall probe setups have been developed
 - Main issue is in determining accurate Hall probe location
 - ✓ Stretched wire integral methods can be applied
- Pulsed wire technique is being refined
 - provides fast determination of first and second integrals

Soren Prestenon

53 rd International FEL Conference, August 25th, 2011, Shanghal, China

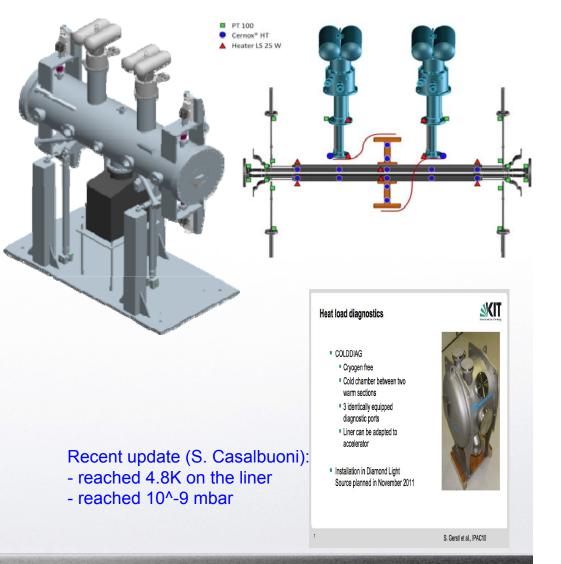



See Podobedov: -PRSTAB 12, 2009

Technology developments: 4: Wakefields and image currents

- "Cold-bore" operation results in highly-conductive surfaces (RRR can be very large)
 - impacts wakefields and image current heating of walls
- High conductivity => larger mean-free path l
 - ✓ Anomolous skin effect (ASE) regime when $l > \delta$
 - ✓ Extreme ASE regime: $l > \delta$ and $k << k_p v_f/c$
 - ✓ High-frequency regime: $k \sim k_p v_f/c$

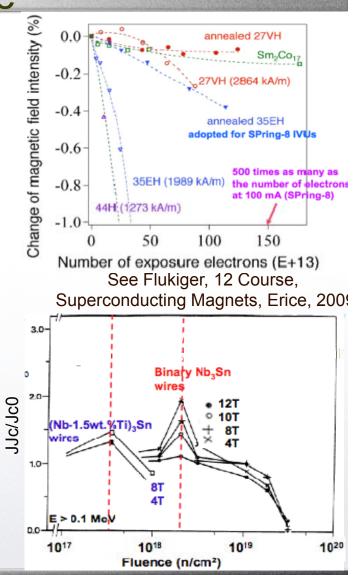
$$\delta = \sqrt{rac{2}{Z_0 \sigma_c k}}$$

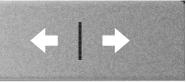


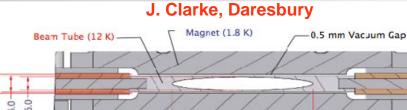
Measuring image currents

• Calorimetry:

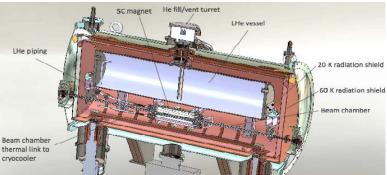
- SINAP/LBNL collaboration:
 - Measure heat loads via temperature gradients
 - Cooled by one or two cryocoolers
 - in-situ heaters:
 - constant-temperature operation
 - in-situ calibration checks
 - First installation planned summer 2012
 - Expect resolution <20mW
- ✓ ANKA:
 - → "COLDDIAG": cryogen-free measurements
 - passed factory and final acceptance test
 - first installation in Diamond Light Source
 - planned November 2011


53 rd International FEL Conference, August 25th, 2011, Shanghal, China


Technology developments: 5: Radiation tolerance


← | →

- High repetition-rate FEL's push the radiation limits of PM materials
 - ✓ Need to collimate beam, control halo
 - ✓ Sm₂Co₁₇ dramatically better than NdFeB
- PM Radiation Damage
 - ✓ FLASH experiment suggested that only 10⁴Gy gave 0.5% loss in B field of PM undulator
- SCU Radiation Damage
 - Primary concern is in epoxy used for potting coils, but much less susceptible than PMs
 - ✓ Should still be protected with collimation scheme
 - ✓ Commonly accepted dose limit for epoxies is 10⁷ Gy used in ITER (Fusion Technology Institute, Wisconsin)



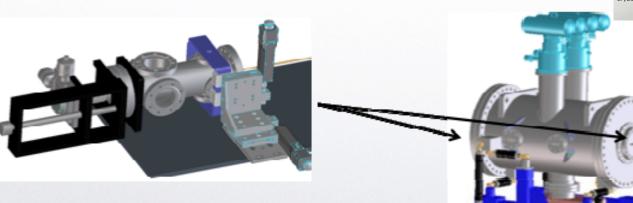
Technology developments: 6: Cryogenics

Y. Ivanyushenkov, APS

Liquid helium dewar

Cryogen-free system

Cold mass prototyping, R&D:


Liquid helium+cryocooler ("heat-pipe" approach)

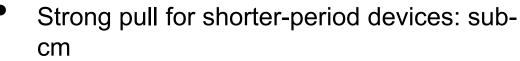
✓ Cryocooler (conduction)

• FEL applications:

ΓT Ι

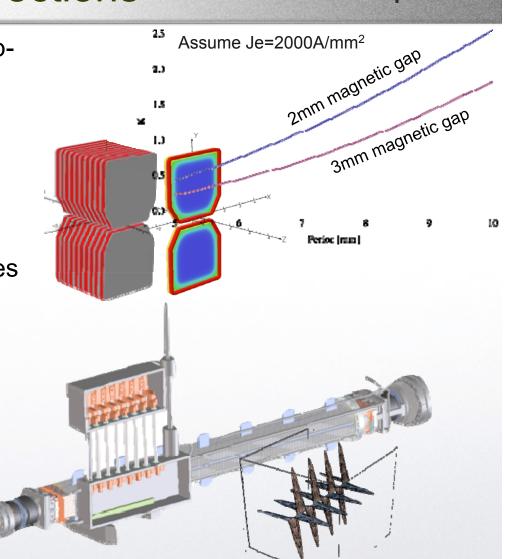
✓ Liquid helium+liquifier

Soren Prestenion


.....

BERKELEY

53 rd International FEL Conference, August 25th, 2011, Shanghai, China


Future directions

- Recent workshop held at LBNL
- Some pull for bifilar helical devices
 - most efficient modulator design shortest length FEL
 - ✓ not well-suited for laser-seeding
- Strong pull for variable polarization devices

S. Caspi

D. Arbelaez

L to L constant for the source of the source

Summary

- Significant progress in SCU development
- Real devices will soon be appearing on storage rings
- Field errors are quite low
 - ✓ controlled by fabrication tolerances
- R&D ongoing to address remaining issues
 - ✓ magnetic measurements
 - ✓ field correction
 - ✓ implementation issues (alignment, cryogenics,...)