

Simple Physics for Marvelous Light: FEL Theory Tutorial

Kwang-Je Kim

ANL, U of C, POSTECH

August 22, 26, 2011

International FEL Conference

Shanghai, China

Undulators and Free Electron Lasers

,

Spontaneous emission by one e⁻ in undulator

The e⁻ emits EM wave in the forward direction due to its x-acceleration.
 Consider the wave fronts from successive undulator periods:

- The e⁻ is slower since (1) $c > v \simeq c(1-1/2\gamma^2)$, and (2) its trajectory is curved
- The distance the EM wave slips ahead of the e⁻ in one undulator period is the wavelength of the spontaneous emission:

 $\Box \lambda_1 = \lambda_u (1 + K^2/2)/2\gamma^2$

• The length of the spontaneous emission for an N_u period undulator is $\Box \Delta z_{rad} = N_u \lambda_1$

A coherent wavetrain of length $\Delta z = N_1 \lambda_1$

- At z = 0: $E(t) = E_0 \exp(i\omega_1 t)$, $\omega_1 = 2\pi c/\lambda_1$, $-\Delta z/2c < t < \Delta z/2c$
- Frequency domain: $\tilde{E}(\omega) = \int dt \exp(-i\omega t) E_0(t)$

$$\tilde{E}(\omega) = const \times N_1 \frac{\sin \pi N_1 \Delta \nu}{\pi N_1 \Delta \nu}, \quad \Delta \nu = \frac{\omega - \omega_1}{\omega_1} \begin{bmatrix} 0.0 \\ 0.4 \\ 0.2 \end{bmatrix}$$

- Spectral intensity $dW(\omega)/d\omega \sim \left|\tilde{E}(\omega)\right|^2 \sim (\sin x/x)^2$ -6 -4 -2 0 2 4 6 $x = 2\pi N_u (\Delta \gamma / \gamma - \Delta \nu / 2)$ peaked around with relative bandwidth $\Delta v = \Delta \omega / \omega \sim 1/N_1$
- For undulator radiation, the electron energy may be off by $\Delta \gamma$. Then $x = \pi N_{\mu} (\Delta v - 2\Delta \gamma / \gamma)$

 $\left(\frac{\sin x}{x}\right)$

0.8

Undulator radiation from a collection of electrons—a "bunch"

• The wave trains from N_e electrons in a bunch of length Δz_{el} combine to "chaotic light" of length Δz consisting of coherent "spikes" of length Δz_{rad}

$$\Delta \Omega_{t} = \Delta z \times \Delta \omega / \omega = \sqrt{\lambda^{2} + (\Delta z_{el} / N_{u})^{2}} \geq \lambda_{1}$$

• Temporal coherence: if $\Delta \Omega_t \sim \lambda_1$, then the front and back of the radiation pulse can be brought together for interference.

FEL Theory Tutorial Aug 2011 KJK

A monochromator increases temporal coherence

A monochromator extends a wavetrain: $\Delta \omega \rightarrow \Delta \omega_M << \Delta \omega$, $\omega_1 I \Delta \omega_M = N_M$

- A collection of wavetrains becomes coherent $\Delta \Omega \rightarrow \lambda_1$ if $\Delta z_{el} / N_M << \lambda_1$

$$\Delta \Omega_{t,M} = \sqrt{\lambda_1^2 + (\Delta z_{el} / N_M)^2}$$

Periodic & coherent -

- However, the intensity of wavetrains in general add incoherently
- The amplitudes add in phase if $\Delta z_{el} \ll \lambda_1$ or if electrons are concentrated at positions $z = n\lambda_1$, n=1,2,...

This is what FELs are about!

Energy exchange between e⁻ and coherent radiation

An e⁻ and a coherent EM wave travel through the undulator. They can exchange energy due to the electron's x-velocity. However, the net exchange over many periods vanishes because of the velocity mismatch

- However, when the EM wavelength is λ_1 electrons see the same EM field in the successive period and the energy exchange can accumulate
- An e⁻ arriving at **A**₀ loses energy to the field (e*v*/E <0). Similarly for e⁻ s nearby and at distances $n\lambda_1$, n=1,2,... also lose energy. However, those at $\lambda_1/2$ away gain energy.
- The electron beam develops energy modulation (period length λ_1).

\sim

• Higher energy electrons are faster \rightarrow density modulation develops

• Coherent EM of wavelength λ_1 is generated \rightarrow FEL gain FEL Theory Tutorial Aug 2011 KJK

Equations for electron motion

- Variables
 - -z = distance along the undulator axis
 - θ = electron position in the moving bunch in units of $2\pi/\lambda$
 - η =electron relative energy: $(\gamma \gamma_0) / \gamma_0$
- EM wave: $E_x = \hat{E} \cos(kz \omega t)$
- Pendulum equations

 $\frac{d\theta_i}{dz} = (4\pi/\lambda_u)\eta_i \qquad \text{: higher energy e moves faster}$ $\frac{d\eta_i}{dz} = \frac{eK}{2\gamma^2 mc^2} \hat{E} \sin \theta_i \quad \text{: } \theta\text{-dependent energy gain}$

- The electrons' energy loss averaged over initial θ becomes the gain in the EM field

Spontaneous & stimulated emission, and gain

- Total energy conservation: $\mathcal{E}_i + \int |E_L|^2 = \mathcal{E}'_i + \int |E'_L + e_{s,i}|^2$
- Laser energy conservation : $\int |E_L|^2 = \int |E'_L|^2$
- $\rightarrow \mathcal{E}'_i = \mathcal{E}_i 2 \operatorname{Re} \int e_{s,i} * E'_L \int |\mathbf{x}_{s,i}|^2 : 2 \operatorname{Re} \int e_{s,i} * E'_L = W_{stim}$
- The amplitude $e_{s,i}$ depends on electron energy. Since, $\mathcal{E}_i \neq \mathcal{E}'_i$, we guess that it depends on the average: $\overline{\mathcal{E}}_i = \mathcal{E}_i 0.5 \times W_{stim}$
- Thus $e_{s,i}(\mathcal{E}_i) \rightarrow e_{s,i}(\mathcal{E}_i 0.5 W_{stim}) = e_{s,i}(\mathcal{E}_i) (\int e_{s,i} * E'_L)(\partial e_{s,i}/\partial \mathcal{E}_i)$
- The last term adds to $E'_L : E'_L \rightarrow (1+g)E'_L$, $g = -\frac{1}{2}\frac{\partial}{\partial \varepsilon}\sum_i |e_{s,i}|^2$
- Gain is the derivative of the spontaneous emission spectrum
 FEL Theory Tutorial Aug 2011 KJK

Madey's theorem for power gain

$$G = -\pi \frac{I}{emc^2} \frac{\partial}{\partial \gamma} \left(\frac{dW_{spon}(\omega, \gamma)}{d\omega} \right)$$

• $dW_{spon}(\omega, \varepsilon)/d\omega$ = the spectral density of spontaneous emission, *I* = the electron current)

Low-gain FEL oscillator principles

- Synchronism: The spacing between e bunches =2L/n (L=cavity length)
- Lasing starts if: $(1+G_0) R_1 R_2 > 1(R_{1,2} : mirror reflectivity), G_0 = initial gain$
- → Need high-reflectivity, normal-incidence mirrors
- → Could be difficult for soft x-ray and shorter wavelengths?
- The gain G decreases as the intracavity power increases. A steady state ("saturation") is reached when (1+G_{sat}) R₁ R₂ =1
- Output power = (1-R_{1,2}) [] intracavity power –loss in mirrors
- FELOs have been built for IR, visible, and UV wavelengths

Existing and future FEL oscillators

Jlab IR-UV User Facility

Possible future hard x-ray FEL oscillator using diamond crystals for x-ray cavity

By varying the incidence angle Θ , one can obtain a wide range of photon energies that satisfy Bragg's law $E = E_H \cos \Theta$ Tunability allows one to pick a single crystal for all wavelengths of interest

Low gain FEL oscillator performance: Intensity

- FEL efficiency:
 - Spontaneous radiation spectral width $\Delta\omega/\omega = 2\Delta\gamma/\gamma \sim 1/N_u$
 - We have seen : $\Delta \gamma / \gamma |_{FEL} = 1/2 \Delta \gamma / \gamma |_{spon} \approx \frac{1}{4N_u}$
- FEL output power $\approx (1/4N_u) \times$ electron beam power
- Electron energy spread requirement: $\Delta \gamma / \gamma |_{spread} \leq 1/4 N_u$

Temporal and spectral evolution

- As the roundtrip pass number *n* increases
 - The spectral width decreases: $\Delta \omega / \omega \propto 1 / \sqrt{n}$
 - The pulse width decreases: $\Delta z \propto 1/\sqrt{n}$
- Evolution stops when $\Delta z \times \Delta \omega / \omega \rightarrow \lambda$
- \rightarrow The limiting spectral width (the super-mode theory)

$$\frac{\Delta \omega}{\omega} \rightarrow \sqrt{\frac{1}{2N_u} \frac{\lambda}{\Delta z|_0}} = (\text{ gain BW } \square \text{ "transform limited BW"})^{1/2}$$

• However, the full transform limit $\Delta \omega \omega = \lambda I \Delta z_0$ may be achieved with nonlinear saturation: $y_0 \xrightarrow{N_{pass} = 10}_{90} \xrightarrow{N_{pass} = 30}_{6} \xrightarrow{N_{pass} = 100}_{30} \xrightarrow{N_{pass} = 200}_{32} \xrightarrow{N_{pass} = 6}_{32}$

XFELO: $\lambda \Delta z \sim 10^{-7}$ for $\lambda = 1$ Å and $\Delta z = 1$ ps

High-gain, single-pass FELs

- With high electron beam qualities and a long undulator, the single pass gain can be made very high
- If coherent seed is available, then amplifier mode with harmonic generation produces intense, coherent, short wavelength output
- Without a seed, SASE (self-amplified-spontaneous-emission) produce quasi-coherent output

Exponential growth in high-gain FEL

- Three quantities characterizing the amplification process
 - **E**:EM amplitude:
 - $b = < \exp(-i\theta) > :$ Density modulation:
 - $P = < \eta \exp(-i\theta) > :$ Energy modulation:
- Evolution as a function of z
 - EM field induces energy modulation: $dP/dz = 2k_uC_1E$
 - Energy modulation induces density modulation: db/dz= -i2k_uP
 - Density modulation generates EM field: dE/dz= 2k_uC₂b

$$ightarrow d^{3}E/dz^{3}$$
= -i(2 k_{u}) $^{3}C_{1}C_{2}E$; $ho^{3} = C_{1}C_{2} = rac{1}{8\pi}rac{I}{I_{A}}rac{K^{*2}}{1+K^{2}}rac{\gamma\lambda^{2}}{\Sigma_{A}}$

• The solution is $E=\Sigma a_i \exp(-2i\mu_i\rho k_u z)$:

 $\Box \mu_{i}$ are solutions of $\mu^{3}=1 \mu_{1}=1, \mu_{2}=\frac{-1-\sqrt{3}i}{2}$, $\mu_{3}=\frac{-1+\sqrt{3}i}{2}$

- The root μ_3 gives rise to an exponential growth

FEL Theory Tutorial Aug 2011 KJK

General 1-D solution in linear regime

- Slowly varying amplitude in frequency domain $E_v(z)$, $v = \Delta \omega / \omega_1$
- The solution of the initial value problem for an arbitrary momentum distribution $V(\eta)$ is:

$$E_{\nu}(z) = \sum_{j} \frac{e^{-2i\mu_{j}\rho k_{u}z}}{D'(\mu_{j})} \left[E_{\nu}(0) + i \frac{eK^{*}n}{8\varepsilon_{0}\gamma\rho k_{u}N_{\lambda}} \sum_{j=1}^{N_{e}} \frac{e^{-i\nu\theta_{j}(0)}}{\eta_{j}(0)/\rho - \mu_{j}} \right], \quad D'(\mu) = \frac{dD(\mu)}{d\mu}$$

- The first term is coherent amplification and the second SASE
- Here μ_i is the solution of ($\Delta v =$ "detuning"= $v-1 \ll 1$):

$$D(\mu) = \mu - \frac{\Delta v}{2\rho} - \int d\eta \frac{V(\eta)}{(\eta / \rho - \mu)^2} = 0$$

• For cold beam at $\Delta v = 0$: $\mu - 1/\mu^2 = 0$ (reproduce the cubic equation)

The main characteristics of high-gain FEL in terms of ρ

- For a typical x-ray FEL, $\rho \sim 10^{-3}$
- Power gain length: $L_{\rm G} \sim \lambda_{\rm u}/(4\pi\rho)$
- Undulator periods for saturation: ~1/ ρ
- Spectral bandwidth: $\Delta\omega/\omega \sim \rho$
- Coherence length: ℓ_c ~ λ/ρ << Δz_e
 → "Chaotic" light
- Saturation power: ~ ρ × beam power
- Maximum amplification factor:
 - ~ # of electrons in $\ell_{\rm c}$

Transverse properties of propagating EM waves

- Coherent EM wave diffracts if transversely restricted by Δx : $\Rightarrow \Delta \phi = \lambda / \Delta x \Rightarrow \Delta \Omega_x = \Delta x \Delta \phi = \lambda$ -----(1)
- An extended source of length L has a depth-of-field blur
 - $\rightarrow \Delta x = \Delta \phi L \quad -----(2)$

 $\Rightarrow \Delta x = \sqrt{\lambda L}$ and $\Delta \phi = \sqrt{\lambda/L}$

For fundamental Gaussian mode:

$$\sigma_{r} = \sqrt{\frac{\lambda}{4\pi}Z_{R}} \quad \sigma_{r'} = \sqrt{\frac{\lambda}{4\pi}\frac{1}{Z_{R}}} \quad \sigma_{r}\sigma_{r'} = \frac{\lambda}{4\pi}$$

Note the correspondence between the light and e-beam optics:

 $\Box \ \mathcal{X} 4\pi \qquad \leftrightarrow \quad \varepsilon_{x} \text{ (rms emittance)} \\ Z_{R} \text{ (Rayleigh length)} \leftrightarrow \quad \beta - \text{ function}$

An incoherent light can be made coherent by selecting a phase space area of λ . Transversely coherent light exhibits interference.

Transverse properties of undulator radiation

- Red shift at an angle ϕ , $\lambda_1(\phi) = \lambda_u (1 + \phi^2 \gamma^2 + K^2/2)/2\gamma^2$
- Angular divergence of central cone $\sigma_{\Delta\phi} = \sqrt{\lambda_1/2L_u} = \sqrt{\left(\frac{\lambda_1}{4\pi}\right)\left(\frac{2\pi}{L_u}\right)}$
- The undulator radiation by one-electron is approximately the transversely coherent Gaussian mode with $Z_{\rm R} \sim L_{\rm u}/2\pi$
- Undulator radiation from a beam of electrons is a convolution of the one-electron radiation and the electron beam distribution

 \rightarrow Transversely coherent if $\varepsilon_x \leq \lambda$

Temporal bunching implies transverse coherence → FELs are transversely coherent

- In low gain oscillator, the mode is similar to freepropagating Gaussian laser mode
- In high-gain FEL the mode is guided

Low gain FEL oscillator is transversely coherent

- The eigenmode is an approximately free-propagating Gaussian mode with $Z_R \sim L_u/2\pi$ and the waist in the middle of the undulator
- Temporally coherent along the full length of the pulse → transversely coherent
- FELO is coherent transversely as well as temporally

FEL Theory Tutorial Aug 2011 KJK

Transverse behavior in high-gain FELs

The 1D dispersion relation becomes the eigenmode equation for the complex growth rate µ and the associated transverse mode shape.
 For parallel electron beam with the density profile U(x):

$$\left(\mu - \frac{\Delta v}{2\rho} + \Lambda^2 \nabla_T^2 - U(x) \int d\eta \frac{V(\eta)}{(\mu - \eta / \rho)^2} \right) A(x) = 0$$

- The electron's betatron motion can be included.
- The initial value problem can be solved as a sum of eigenmodes
- A single mode dominates in the exponential growth regime → Frozen (or guided) transverse profile of mode size $\sim \sqrt{(\lambda/4\pi)L_G}$

LCLS

Transverse mode development

z = 37.5 m

X-ray diffraction pattern of a single Mimivirus particle imaged at the LCLS. (Image courtesy of Tomas Ekeberg, Uppsala University.)

The progression of marvelous x-ray sources from spectral brightness point of view

26

Additional topics (in x-ray FEL)

- Harmonic generation for coherent soft x-ray
 - Echo-enabled scheme for high harmonics
- Improving the temporal coherence of high-gain x-ray FEL
 - Use input coherence radiation via harmonic generation (FEL, laser, or both)
 - Filter SASE by a monochromator and send through another high gain FEL—self seeding scheme
- Ultra short pulse (~100 atto-second) generation
 - single-cycle energy modulation → compression → subfemtosecond current spike → enhanced FEL growth rate

Other bright ideas YOU might invent, triggered by this tutorial!

Thank you for the Program Committee for the invitation, and Those who helped me to prepare this talk

- Ryan Lindberg
- Sven Reiche
- Max Zolotorev

FEL Theory Tutorial Aug 2011 KJK

.

28

