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Spontaneous emission by one e in undulator

= The e” emits EM wave in the forward direction due to its x-acceleration.
Consider the wave fronts from successive undulator periods:
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= The e is slower since (1) ¢ > v = ¢(1-1/252), and (2) its trajectory is
curved

= The distance the EM wave slips ahead of the e in one undulator period
Is the wavelength of the spontaneous emission:

1 A=A (L+K212)12 2
= The length of the spontaneous emission for an N, period undulator is
U Azrad - I\Iuﬂ'l
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A coherent wavetrain of length 4z = N4,

AVAVAVAVAVAY e

= Atz =0: E(t) =E, exp(iot) , o,=2nc/A,, - Az/2c <t<Az/2C

1.0 —

= Frequency domain: E(w) = [ dt exp(—iwt)Ey(t) *¥

0.6

~ sinzN,Av w— @ '
E(w) = const x N, L, Av= =
7Z'N1AV O 0.2}
— ] 0.0 = . L _' ! L L :
= Spectral intensity dW (w)/dw~ |E(w)|2~ (SiN XIX)2 G CorNa(Ae/y - Av)

peaked around with relative bandwidth Av=Aw/w ~ 1/N,

= For undulator radiation, the electron energy may be off by Ay. Then
X=7N,(4v-2A4yy)

FEL Theory Tutorial Aug 2011 KJK

A 4



N
Undulator radiation from a collection of

electrons—a “bunch”

= The wave trains from N, electrons in a bunch of length 4z, combine to
“chaotic light” of length Az consisting of coherent “spikes” of length Az,

H o/ N, Phase space
distribution

AZ = \/Azelz +Az, " = \/Aze,z +(4,N,)°

A=l o
%ﬂi m;m uﬂﬂ“mmw B

HHH

Single train
phase space

Z

Combined
= Phase Space area . phase space

AQ, = Azx Ao | w=\JA* +(Az, I N,)* > 4,

= Temporal coherence: if AQ,~ 4., then the front and back of the
radiation pulse can be brought together for interference.
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L
A monochromator increases temporal coherence

A monochromator extends a wavetrain: de 2 Am,, << 4w, o, /4@, =N,,

f\/\/\/\/\/\ﬂ\/v\/\/\/\/\/\/vv

= A collection of wavetrains becomes coherent 4Q2 > A4, if Az, N, << 4,
AQt,M = \//112 +(Azy I Ny, )2

A <«—— periodic & coherent————>
BV ANV ANV ANV ANV |
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= However, the intensity of wavetrains in general add incoherently

= The amplitudes add in phase if 4z, << A, or if electrons are
concentrated at positions z =n4;, n=1,2,..

CARAAATAAAAAAAT

= This 1s what FELSs are about!

FEL Theory Tutorial Aug 2011 KJK

a 6




Energy exchange between e and coherent radiation

= An e and a coherent EM wave travel through the undulator. They can
exchange energy due to the electron’s x-velocity. However, the net
exchange over many periods vanishes because of the velocity mismatch

e

0 A3

= However, when the EM wavelength is 4, electrons see the same EM field in
the successive period and the energy exchange can accumulate

= An e arriving at A, loses energy to the field (ev/E <0). Similarly for e"s
nearby and at distances n4,, n=1,2,... also lose energy. However, those at
A,/2 away gain energy.

= The electron beam develops energy modulation (period length 4,).

W\

= Higher energy electrons are faster - density modulation develops

WWWN

= Coherent EM of wavelength A, is generated-> FEL gain
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L
Equations for electron motion

= Variables
— z = distance along the undulator axis
— 68 = electron position in the moving bunch in units of 2 /A
- n =electron relative energy: (y — o) /Yo

= EMwave: E, = E cos(kz — wt)

= Pendulum equations

del = (47T//1u)771 - higher energy e moves faster
dm _ 5 i
z o mc2 E sin 0; : 6-dependent energy gain

= The electrons’ energy loss averaged over initial 8 becomes the gain in
the EM field
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Spontaneous & stimulated emission, and gain
/
E/

= Total energy conservation: §; + [|E. |2 = &'; + f|E’L + es,i|2

= Laser energy conservation : [|E;|>=[|E',|?

’ / 2 /
T gi — gi —2Refes,i *EL —f%,d : 2Refesli*EL = Wstim

= The amplitude e, ; depends on electron energy. Since,&; # £';, we guess
that it depends on the average: &, = € — 0.5 X Wgim

= Thus eg;(€;) Des;i(E;— 0.5 W) = e5;(E;) — (J e * E1) (e ;/0E;)

= Thelasttermaddsto E; : E;2>(1+9g)E;, g = — %%Ziles,i

= Gain is the derivative of the spontaneous emission spectrum
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Madey’s theorem for power gain

| 0 (dWSpon @ y)j

G=-x >
emc” oy dw

dWspon(w, €) /dw = the spectral density of spontaneous

emission, | = the electron current)
1.0

0.5

0.0

The FEL gain BW is about
half of the spontaneous

emission BW 05t d (sinx
dr \
10T 2 0 2 4 6
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L
Low-gain FEL oscillator principles

Electron Bunch
Linac / Dump
sptsheels g Pah T,
e ST

Optical Pulse

Optical Cavity Mirrors

= Synchronism: The spacing between e bunches =2L/n ( L=cavity length)
= Lasing starts if: (1+G,) R; R, >1(R,, : mirror reflectivity), G,= initial gain
= Need high-reflectivity, normal-incidence mirrors

—> Could be difficult for soft x-ray and shorter wavelengths?

= The gain G decreases as the intracavity power increases. A steady state
(“saturation”) is reached when (1+G.,) R; R, =1

= Output power = (1-R, ,) I intracavity power —loss in mirrors
= FELOs have been built for IR, visible, and UV wavelengths



L
Existing and future FEL oscillators

Jlab IR-UV User Facility

h-voltage
supply

o
3£

E =150 MeV Elestron gun
135 pC pulses up to 75 MHz :
(20)/120/1 microd/pulse in (UV)/IR/THz 14 cromonie
250 nm = 14 microns, 0.1 -5 THz

Sources are simultaneously
produced for pump-probe studies

Possible future hard x-ray FEL
oscillator using diamond
crystals for x-ray cavity

M, X-rays
< — — —
s

7 UV system is presently under

construction undulator

C H'7L;H 2¢
D o
Built primarily under ONR and AF funding to .
investigate high power FEL operation ~
,-JT' [:H:_ “&‘j\*-
B = © C

By varying the incidence angle ®, one can obtain a wide range
of photon energies that satisfy Bragg's law £ = E,; cos®

Tunability allows one to pick a single crystal for all wavelengths of interest
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L
Low gain FEL oscillator performance: Intensity

= FEL efficiency:

— Spontaneous radiation spectral width Aw/ow = 2Ay/y~ 1/N,
1

— We have seen : Ay /ylreL = /2 8Y /Y lspon = 33~
= FEL output power = (1/4N,,) X electron beam power

= Electron energy spread requirement: Ay /¥ |spreaa < 1/4Ny,
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T
Temporal and spectral evolution
As the roundtrip pass number n increases
— The spectral width decreases:Aw/w < 1/+/n
— The pulse width decreases: Az « 1/y/n
Evolution stops when Az X Aw/w — 4
- The limiting spectral width ( the super-mode theory)

A 1 2 . .
=5 J =( gain BW [l “transform limited BW")1/2
w 2N, Az|g

= However, the full transform limit Ae/ @=4/4z, may be achieved with

: : . Npass = 10 Npass = 30 Npass = 100 Npass = 200 Npass = 600,1000
nonlinear saturation: e e 30 e Pyl
< B , < 24 <l
T L ) o 16F T 16
3 2} § 10} | % ; g
a | [ t a 8 -‘;" | s 8 -
o L1012 g 2 9 2
t(ps)
1.0 1.0 T T 1.0 1.0
XFELO: A/lAz ~ 107 for _ |. _ AT, oL _
3 i 3 S| i 3] 3
ﬂ«zlA and 4z=1 PS %0.5—5 %05 %05 . %{).5-5 ’ %05—5
> ii E > = | V\\% = | %L = | Eg
G.GEI '-% 0.0 uluff' — ) o.ogl' ; j D.s?;' *ﬁt i’
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High-gain, single-pass FELS

With high electron beam qualities and a long undulator, the single pass
gain can be made very high

If coherent seed is available, then amplifier mode with harmonic
generation produces intense, coherent, short wavelength output

Without a seed, SASE (self—ampIified—spontaneous—emission) produce
guasi-coherent output

SACEAEpndulatar, L%
o v _-_"*"“&_ 2
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Exponential growth in high-gain FEL

Three quantities characterizing the amplification process

— E :EM amplitude:

— b=<exp(-if) > :Density modulation:

— P=<pexp(-if)> :Energy modulation:

Evolution as a function of z

— EM field induces energy modulation: dP/dz= 2k C,E

— Energy modulation induces density modulation: db/dz= -i2k P
— Density modulation generates EM field: dE/dz= 2k C,b

1 I K*? ya?

> d¥E/dz3= -i(2K,)C,CoE ; p* = 1€y = g1

= The solution is E=Z a,exp (-2igp Kk, z):

—-1-/3i =143
2 ) HS _ 2

— The root u; gives rise to an exponential growth
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e
General 1-D solution in linear regime

= Slowly varying amplitude in frequency domain E (z), v= Aw/o,

= The solution of the initial value problem for an arbitrary momentum

distribution V(7) is:
2|,u-pk z * N —iv@; (0)

e . eKn : ’ dD

E (@)=Y S| E 0+ 5 . D(w =L

D( ) 880710kuN/1 i= UJ(O)/p luj lu

= The first term is coherent amplification and the second SASE
= Here 4 is the solution of (Av = “detuning”= v—1 <<1):

_Av Vi) _
Pl =u 2p dn(ﬂlp—/l)z

= For cold beam at Av=0: u— 1/p*=0 (reproduce the cubic equation)
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The main characteristics of high-gain FEL In
terms of p

For a typical x-ray FEL, p~ 103
Power gain length: L5 ~ 4,/(4np) _
Undulator periods for saturation: ~1/ p wsi
Spectral bandwidth: Aw/o ~p ;

10101

Coherence length: Z~Alp << Az, :
- “Chaotic” light 0

Average Power (W)
)

Saturation power: ~ p xbeam power
Maximum amplification factor: K B K | s 1] 10
- # Of eleCtronS In /C Undulator Radiation 40 Exponential gain Saturation
Eg EZB ) %\m: )
x + | i _
00 1 2 00 I I 2 oﬂ ‘i I 2
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Transverse properties of propagating EM waves

= Coherent EM wave diffracts if transversely restricted by Ax:
2> A= UAX 2> AQ =AX Ap= A ----- (1)
= An extended source of length L has a depth-of-field blur
2> AX =ApL - (2)

S>Ax =+/AL and 4¢ = \/2/L

= For fundamental Gaussian mode:

A A1 A %
o, =.,—4, o0©,=|—— 0,0,=—
A Z,

Ar A7

= Note the correspondence between the light and e-beam optics:
1 Aldrn o g, (rms emittance)
Z, (Rayleigh length) & p—function
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An incoherent light can be made coherent by
selecting a phase space area of A.
Transversely coherent light exhibits interference.

MWM
’%WM

* 2R > Aperture Young's slit Screen

Phase space area ) Selected area smaller than
A % A = Incoherent A =+ Coherent (exhibits interference)
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Transverse properties of undulator radiation

= Red shift at an angle ¢, A,(#)=4,(1+ ¢ 2y+K2/2)/2)?

= Angular divergence of central cone JA¢=\/11/2Lu:\/ (%) (i_n)

= The undulator radiation by one-electron is approximately the
transversely coherent Gaussian mode with Z; ~ L /2w

= Undulator radiation from a beam of electrons is a convolution of the
one-electron radiation and the electron beam distribution

—>Transversely coherentif g < A

\ J ) W’K
% L N
/R

(IS b

FEL Theory Tutorial Aug 2011 KJK
21



Temporal bunching implies transverse
coherence-> FELs are transversely
coherent

= |In low gain oscillator, the mode is similar to free-
propagating Gaussian laser mode

= |[n high-gain FEL the mode is guided
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Low gain FEL oscillator is transversely coherent

= The eigenmode is an approximately free-propagating Gaussian
mode with Z, ~ L /2r and the waist in the middle of the undulator

= Temporally coherent along the full length of the pulse—> transversely
coherent

= FELO is coherent transversely as well as temporally

-1.5 -10 05 00 05 1.0 1.5 -1.5 -10 05 00 05 1.0 15 -15 -10 05 00 05 1.0 15
t(ps) t(ps) t (ps)

€= clectron beam PWHM —»|
-15 -10 05 00 05 1.0 1.5 -1.5 -10 05 00 05 1.0 . -1.5 -10 05 00 0S5 1.0 15
t(ps) t (ps) t(ps)
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e
Transverse behavior in high-gain FELSs

= The 1D dispersion relation becomes the eigenmode equation for the
complex growth rate x and the associated transverse mode shape.
For parallel electron beam with the density profile U(x):

Av 272 V(77)
~ 2V AvE —u()[d _|A(X) =0
(” 20" ] n(ﬂ—n/p)] "

= The electron’s betatron motion can be included.

= The initial value problem can be solved as a sum of eigenmodes

= A single mode dominates in the exponential growth regime 2
Frozen (or guided) transverse profile of mode size ~\/(A/4n)LG

A
é E e-beam |
e e N

g/ .'-"""‘.-.H." |#'r__,.----"""'---_-----‘-‘.. &
Many Moore’s Mode with
initial modes guided mode highest gain
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L C |_ S Transverse mode development

- COMPress o
- S e i

Experimental < s -9 A Zeks

X-ray diffraction pattern of a single Mimivirus
particle imaged at the LCLS. (Image courtesy of
Tomas Ekeberg, Uppsala University.)




The progression of marvelous x-ray sources
from spectral brightness point of view
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Additional topics (in x-ray FEL)

= Harmonic generation for coherent soft x-ray
— Echo-enabled scheme for high harmonics
= Improving the temporal coherence of high-gain x-ray FEL

— Use input coherence radiation via harmonic generation (FEL,
laser, or both)

— Filter SASE by a monochromator and send through another high
gain FEL—self seeding scheme

= Ultra short pulse ( ~100 atto-second) generation

— single-cycle energy modulation> compression—> subfemto-
second current spike - enhanced FEL growth rate

= Other bright ideas YOU might invent,
triggered by this tutorial!
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Thank you for the Program Committee
for the invitation, and
Those who helped me to prepare this talk

= Ryan Lindberg
= Sven Reiche
= Max Zolotorev
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Thank you!
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