laboratoire d'optique appliquée

Palaiseau - FRANCE

22/08/11

High harmonics from gas, a suitable source for seeding FEL from vacuum-ultraviolet to soft X-ray region (XUV)

G. LAMBERT

guillaume.lambert@ensta.fr

UMR 7639

M.E. Couprie, M. Labat, O. Chubar Synchrotron Soleil, Gif-sur-Yvette, France

D. Garzella, B. Carré CEA, DSM/SPAM, Gif-sur-Yvette, France

T. Hara, H. Kitamura, T. Shintake, Y. Tanaka, T. Tanikawa **SPring-8/RIKEN Harima** *Institute, Hyogo, Japan*

B. Vodungbo, J. Gautier, A. Sardinha, F. Tissandier, Ph. Zeitoun, S. Sebban, V. Malka LOA ENSTA-Paristech, Palaiseau, France

J. Luning LCPMR, Paris

C.P. Hauri *Paul Scherrer Institute, Villigen, Switzerland*

M. Fajardo Centro de Física dos Plasmas, Lisboa, Portugal

Thanks to **JSPS**

Laserlab Integrated Infrastructures Initiative RII-CT-2003-506350 TUIXS European project (Table top Ultra Intense XUV Sources) FP6 NEST-Adventure n.012843 European Research Council Paris ERC project 226424

> COLE POLYTECHNIQUE Paristech

UMR 76.39

100

XUV Free Electron Lasers (FEL) : SASE

FLASH (2004, down to 4.1 nm), SCSS (2007, 50 nm), SPARC (2009, 160 nm)...

SASE: Self Amplified Spontaneous Emission

- -High number of photon : 10¹² photons
- -Short pulse duration (sub ps)
 - peak power (GW)
- -Relatively high repetition rate (tens Hz)
- -High wavelength tuning
- -Variable polarization
- -Good wavefront (Bachelard, PRL 106, 2011)
- -Good spatial coherence (Ischebeck, NIMA 507, 2003)

very performing tool for user experiment but...

SASE limitations

-Weak gain at short wavelength, single pass long undulator (tens m)

-Relatively important shot to shot variations: intensity, temporal/spectral profile jitter for pump-probe experiments *limited temporal coherence* (Saldin, Opt. Commun. 202, 2002)

How to reduce/supress SASE limitations: "seeding fully coherent light" in XUV ?

Previous demonstrations in IR with CO₂ and Ti: Sa lasers, then in UV with crystals (Yu, Science 289, 2000)

-Coherent

Improvement of the temporal coherence

-Intense

Decreasing of the saturation length

=> shorter undulator

XUV radiation : Harmonics produced from gas (HHG)

Why proposing High Harmonics Generated in gas (HHG) ?

- Spatially and temporally coherent
- Relatively tunable
- Short pulse duration (10-100 fs)
- Conversion efficiency (10⁻⁵ to 10⁻⁷)
 ~ 100 nJ nJ

-Limited energy per pulse Compared to SASE shot noise?

Direct seeding with HHG at 160 nm at SCSS: fundamental spectrum

5

Non Linear Harmonic spectra

Intense and coherent emission at short wavelength while E=150 MeV

Evaluation of the seed level requirement for observing coherent emission

Overview of the HHG seeded FELs

Name	Wavelength (nm)	state	Seeding process	Country	
SCSS Test Accelerator	60) 160	demonstrated	Direct HHG	Japan	
SPARC	160 / 266	demonstrated	Direct HHG / HGHG	Italy	
sFlash	38-13	Due 2010-2011	Direct HHG	Germany	
Fermi	100-10	Due 2011-2012	HGHG, direct HHG?	Italy	
SwissFEL	5	Due 2018	EEHG, direct HHG	Switzerland	
SPARX	15	Due ?	HGHG, direct HHG?	Italy	

(Togashi, Optics Express 19, 2011)

(Giannessi, Proceedings FEL10 JACOW (2011) Labat WE0B3)

What has to be improved on HHG for seeding FEL in future?

Harmonics properties relevant for seeding					
Already obtained	To be improved				
-fs pulse duration -Full coherence -High repetition rate: kHz HH currently First MHz HH in xenon (J. Boullet et al. optics letters, 34, 1489 (2009))	 Intensity at short wavelengths Tuneability (only odd HH): => need to considerably chirp the driving laser and/or change the gap of the undulator Two colour mixing Wavefront: diffraction limited beam (aberration-free) => need to drastically clip the IR or HH beam or use adaptive optics for IR or HH Variability of the polarization Stability of the shot to shot intensity 				

Keep the simplicity of the classical HHG setup

100 µm thick BBO crystal, and with the <u>optimization parameters corresponded to</u> ω : E_{ω} <6 mJ, L_{c} =7-9 mm and P_{G} =30-35 mbar

Then next?

Already obtained	To be improved			
-fs pulse duration -Full coherence	-Variability of the polarization			
-High repetition rate: kHz to MHz soon	-Otability of the shot to shot intensity:			
-Intensity at short wavelengths				
-Tuneability: both odd and even harmonics				
Use parametric amplifier (1.2-1.5 μ m)				
-Wavefront: aberration-free beam				
-Simple system				

Harmonic order	31 st	33rd	35^{th}	37 th	39 th	41^{st}	43rd	45 th
λ (nm)	26.3	24.7	23.3	22	20.9	19.9	19	18.1
P_{Cmax} (%)	100	100	97	91	85	76	66	61
T_C (%)	2.6	2.7	3.7	3.6	4.4	4.3	4.0	3.7

In XUV performances are close: weak flux harmonics weak temporal coherence

Single shot coherent diffraction imaging of nano-object (Ravasio et al. PRL 103 (2009)

Natural synchronization between Laser and HH

Coherent diffraction imaging of magnetic domains (Vodungbo, EPL 94, 2011):

Ultra-fast demagnetization

Integrated density gives magnetization : I ~ M^2

Thank you for your attention