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Abstract 
In this paper the nonlinear dynamic of Two-Stream 

Free Electron Laser (TSFEL) has been investigated. A set 
of coupled nonlinear differential equation in 1D 
approximation is employed, which governs the self-
consistent evolution of an electromagnetic wave in the 
presence of two electron beams. Two relativistic electron 
beams with different velocities propagate through the 
wiggler field. Coupled nonlinear differential equations are 
solved numerically. Power versus axial distance has been 
plotted. It has been found that the FEL reaches the 
saturation regime in a longer axial distance in comparison 
the TSFEL. 

INTRODUCTION 
The use of two electron beams rather than one electron 

beam in free-electron laser have some advantages. For 
example, two-stream instability occurs and causes to gain 
enhancement and also increase growth rate [1-2]. In this 
paper we have investigated nonlinear dynamics of 
TSFEL. Nonlinear theory of FEL with helical wiggler and 
axial magnetic field has been studied by Freund et al[3]. 
Nonlinear saturation mechanism of FEL in presence of 
ion channel have investigated with Raghavi et al[4].  In 
TSFEL no calculation has been reported. The purpose of 
the present paper is to investigate of saturation 
mechanism of TSFEL with helical wiggler pump. 

ELECTRON ORBIT EQUATIONS 
Two transversely homogeneous non-neutralized 

relativistic electron beams with different velocity  and 
 propagate along the positive z direction enter to the 

magnetic wiggler field, the wiggler field is given by 
.                      (1) 

Where  denotes the wiggler amplitude,  
wiggler wave number,  being wiggler period, ,  are 
the unit vectors of a Cartesian cordinat system.  

The time-varying vector potential radiation fields is 
written as follows 

        (2) 
.                                        (3) 

 
The subscript i=1, 2, refer to the different beams.  
and  are the time independent amplitude of the 
vector and scalar potentials. nd  are 
electromagnetic and space charge phases that defined as 

                                           (4) 

While, 
.                                             (5) 

Where,  is the wave frequency, and k(z) are the 
wave vectors. This is equivalent to the WKB formulation 
in which it is assumed implicitly that the amplitudes and 
wavenumbers vary slowly over a wavelength [3]. 

The electron orbit equations can be obtained by 
substitution of the static fields in Lorentz force equation 

  (6) 

where  and  are the fluctuating electromagnetic 
fields which are derivable from the vector and scalar 
potentials (2) and (3).It is convenient to write equation in 
rotating frame with the wiggler field as 

   (7-1) 

.                                                                        (7-2) 
It has been assumed that the amplitude and phase are 

slowly varying functions of position ( ), 
and this occurs only in the vicinity of the wave particle 
resonance at , with this assumption equation 
(6)yields three differential equation for three components 
of momentum like variable . Using new 
dimensionless variables: ,

, these equation can be written as 

                                                (8-1) 

                                   (8-2)                   

 .                                             (8-3) 

Where  is the wiggler parameter, , 

 . 
Here ( ) and are 
ponderomotive and space charge phase respectively, 
which given as 

                                             (9-1) 

 .                                                  (9-2) 
In above differential equations we have changed the 

integration parameter from to , according to the 
relation . 
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FIELD EQUATIONS 
In the Coulomb gauge the Maxwell’s equations can be 
written as [3] 

                        (10-1) 

 .                                     (10-2) 

Where  is the nonlinear current density and 
 is the component of the latter perpendicular 

(along) the z direction. The current densities can be 
written as average over the entry time  (defined as the 
time at which an electron crosses the =0 plane) 

 .   (11)                                                                                                                      

Where  , is the velocity of an 
electron at time  which crossed the entry plane at time , 
and  

.                                            (12) 
It should be remarked that it is assumed implicitly in 

the current density that the electron beam is 
monoenergetic. 

By substitution of microscopic fields and source current 
(2) and (3) into the Maxwell’s equations (10-1) and (10-2) 
a set of coupled nonlinear differential equations for the 
slowly varying amplitudes and phases is obtained. The 
nonlinear equation (10-1) can be reduce to three first 
order differential equations for: ,  and . Where  
defines the growth rate (i.e. the logarithmic derivative) of 
the field vector potential. These equations read 

,                   (13-1) 

  
                                                                                   (13-2) 

,      (13-3) 

                                    (13-4) 

.                                  (13-5) 
The average of beam electrons on axial phase is as 

fallow 
,    (14) 

 is the initial phase. 
Equations (8) and (9) together with Eq. (13) give a set 

of 10N+4 self-consistent first order differential equations 
, where N refer to the number of electrons. These 
equations can be solved numerically to find the wave 
evolution in the TSFEL.  

NUMERICAL SOLUTIONS 
The set of coupled nonlinear deferential equations for 

amplifier free-electron laser can be solved by forth order 
Runge-Kutta method.  

The averages in the dynamical equations can be 
calculated by N th order Gaussian quadrature technique. 
We choose, , so the simulation can be done for 
1000 electrons.  

At first, it is assumed that a uniform and single energy 
electron beams with axial symmetry be injected into 
system. The electrons are picked within the range 

. 
The parameters are: the amplitude of wiggler field 

, wavelength of wiggler ; electron 
beam with energy , ; input signal 
frequency  [1].  

In Fig. 1, evolution of the radiation power in TSFEL as 
a function of axial position is presented. 

 

 
Figure 1: Evolution of the radiation power as a function 
of axial position. 

 

 
Figure 2: A comparison between evolutions of the 
radiation poweras a function of axial position for FEL 
(red) TSFEL (blue). 
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Figure 3: Evolution of the radiation power 
as a function of axial position for different value of 
magnetic wiggler strength =0.794 (red), =0.294 
(blue). 

 
As shown in Fig.1, power increases exponentially at 

, and at this range the growth rate has a 
constant value, This shows linear regime. Then power 
increases exponentially till z=33, which is the saturation 
point and radiation amplitude does not increase any more. 
This time, half of the electrons are confined in 
pondermotive potential wells, give energy to the wave 
and the other half receive energy from the wave. When 
both of them are equal, saturation is done. This then 
radiation amplitude does not increase and due to the 
reduced electrons energy, radiation amplitude decreases.  
A comparison between the two cases of FEL and TSFEL 
is shown in Fig. 2. As one can see, the Two-Stream (TS) 
instability causes the saturation length to decrease to 
about 30%. Effect of different strength value of magnetic 

wiggler on saturation length is shown in Fig.3, as one can 
see, saturation length is decrease as strength of wiggler 
pump increase.  

CONCLUTIONS 
 In this paper we have made use of a self consistent 
nonlinear theory to describe the one dimensional 
evolution of a TSFEL. The system of equation we have 
derived describes the evolution of both the wave fields 
and the electron trajectories. The self field effects of the 
electron beam have been included by means of scalar 
potential rising from the current sources. The numerical 
investigation shows that the saturation length is 
affected by the TS instability. A comparison between 
the two cases of FEL and TSFEL is shown. The Two-
Stream (TS) instability causes the saturation length to 
decrease to about 30%. Effect of different strength 
value of magnetic wiggler on saturation length is 
shown. Saturation length is decrease as strength of 
wiggler pump increase. 
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