Paper | Title | Page |
---|---|---|
TUPA11 | Saturation Effect on VUV Coherent Harmonic Generation at UVSOR-II | 212 |
|
||
Light source by using a laser seeding technique are under development at the UVSOR-II electron storage ring. In the past experiments, we have succeeded in generating coherent harmonics (CHs) in deep ultraviolet (UV) and vacuum UV (VUV) region, and also in generating CH with variable polarizations in deep UV [1]. In previous conferences, we reported an introduction of new-constructed spectrometer for VUV and results of spectra measurement, undulator gap dependencies, and injection laser power dependencies on VUV CHs [2]. This time we have successfully observed saturation on CHs intensities and have found some interesting phenomena, which are the necessary power of injection laser to achieve the saturation of CHG is different in different harmonic orders, and the CH intensity is oscillated in deep saturated regime. In this conference, we will discuss the results of some systematic measurements and those analytical and particle tracking simulations.
[1] M. Labat, et al., Phys. Rev. Lett. 101 (2008) 164803 [2] T. Tanikawa, et al., Prc. 1st Int. Particle Accelerator Conf., Kyoto, 2010. [3] T. Tanikawa, et al., Appl. Phys. Express 3 (2010) 122702 |
||
TUPA13 | Present Status and Future Prospects of Project on Utilizing Coherent Light Sources for User Experiments at UVSOR-II | 215 |
|
||
Funding: Quantum Beam Technology Program supported by JST/MEXT (Japan) We have been intensively developing coherent light sources utilizing electron bunches in the storage ring, UVSOR-II, by adding some external components to the ring. After successful generation of coherent synchrotron radiation (CSR) in THz range* and coherent harmonic generation (CHG) in DUV range** by using an intense driving laser, a 5-year new research project named as Quantum Beam Technology Program has been started from FY2008. The project includes introduction of new driving laser system, dedicated undulators and beamlines, and aims at utilizing those coherent radiations for user experiments. The new driving laser system has been installed last year. The undulators and beamlines are now under construction. Installation of those components will be finished before the conference. In the conference, we will report on the present status of system development and future plan of application experiments. *M. Shimada et al., Japanese Journal of Applied Physics, vol. 46, pp. 7939-7944 (2007). **M. Labat et al., European Physical Journal D, vol. 44, pp. 187-200 (2007). |
||