Paper | Title | Page |
---|---|---|
TUPA13 | Present Status and Future Prospects of Project on Utilizing Coherent Light Sources for User Experiments at UVSOR-II | 215 |
|
||
Funding: Quantum Beam Technology Program supported by JST/MEXT (Japan) We have been intensively developing coherent light sources utilizing electron bunches in the storage ring, UVSOR-II, by adding some external components to the ring. After successful generation of coherent synchrotron radiation (CSR) in THz range* and coherent harmonic generation (CHG) in DUV range** by using an intense driving laser, a 5-year new research project named as Quantum Beam Technology Program has been started from FY2008. The project includes introduction of new driving laser system, dedicated undulators and beamlines, and aims at utilizing those coherent radiations for user experiments. The new driving laser system has been installed last year. The undulators and beamlines are now under construction. Installation of those components will be finished before the conference. In the conference, we will report on the present status of system development and future plan of application experiments. *M. Shimada et al., Japanese Journal of Applied Physics, vol. 46, pp. 7939-7944 (2007). **M. Labat et al., European Physical Journal D, vol. 44, pp. 187-200 (2007). |
||
WEOC4 |
Intense Coherent THz Synchrotron Radiation Induced by a Storage Ring FEL Seeded with a Femtosecond Laser | |
|
||
Very recently, we have succeeded in seeding a resonator FEL by injecting an external femtosecond laser at the UVSOR-II storage ring [1]. Intense coherent synchrotron radiation (CSR) in the THz region from a bending magnet was observed when the seeded FEL was operated in the pulsed Q-switch mode [2]. We have also found that the CSR intensity depends on the pulse duration of the seed laser. The CSR intensity is enhanced with short pulse ~200 fsec and suppressed with longer pulse ~200 psec. Simultaneous measurement of the terahertz radiation and the FEL pulse reveals that the radiation is emitted in the growing phase of the Q-switch FEL pulse. We think that the CSR comes from repetitive interactions between the laser pulse and the electron bunch as the short pulse laser growth in the optical cavity. In the presentation, we will also discuss the production mechanism of the CSR.
[1] C. Szwaj et al., FEL2011, TUPB05, in this conference. [2] H. Zen et al., FEL2011, TUPA13, in this conference. |
||
![]() |
Slides WEOC4 [2.715 MB] | |