Paper |
Title |
Page |
THPA14 |
Upgrade of the Optical Synchronization System for FLASH II |
496 |
|
- M. Felber, M.K. Bock, M. Bousonville, P. Gessler, T. Lamb, S. Ruzin, H. Schlarb, B. Schmidt, S. Schulz
DESY, Hamburg, Germany
|
|
|
The optical synchronization system at FLASH has been in operation since 2008. Due to continuous improvement and several upgrades it has become an integral part of the machine operation and of pump-probe experiments as both rely on its performance. In summer 2013, a second FEL section, called FLASH II, which is using the same accelerator as FLASH will start its operation to increase the number of user experiments and to test new seeding schemes. This also requires a major extension of the synchronization system since new clients have to be supplied with a 10 fs-stable timing signal. Six additional stabilized fiber links and the according end stations like bunch arrival time monitors and laser synchronization setups will be installed.
|
|
|
THPA32 |
Femtosecond Stable Laser-to-RF Phase Detection Using Optical Modulators |
551 |
|
- T. Lamb, M.K. Bock, M. Bousonville, M. Felber, P. Gessler, F. Ludwig, S. Ruzin, H. Schlarb, B. Schmidt, S. Schulz
DESY, Hamburg, Germany
- E. Janas
Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
|
|
|
Free-Electron Lasers like FLASH and the European XFEL require the synchronization of RF stations to the optical timing reference of the accelerator. For this purpose, a new technique to phase-lock RF sources to an optical pulse train has been invented. The new technique uses an opto-microwave coupling device together with an ultra-low phase-noise RF source operating at a frequency of 1.3 GHz. In our arrangement, the laser-to-RF phase detector is insensitive to amplitude fluctuations of the optical reference pulse train, which allows the detector to achieve femtosecond precision over long time periods. In this paper, we present the balanced laser-to-RF phase detection principle along with a tolerance study of the arrangement and first results from our prototype setup.
|
|
|