Paper | Title | Page |
---|---|---|
THPA08 | An Option of High Charge Operation for the European XFEL | 481 |
|
||
The 1.3 GHz superconducting accelerator developed in the framework of TESLA and the European XFEL project holds potential to accelerate high charge electron beams. This feature has been successfully demonstrated during the first run of the free electron laser at the TESLA Test Facility with lasing driven by electron bunches with a charge of up to 4 nC. Currently DESY and the European XFEL GmbH perform revision of the baseline parameters for the electron beam. In this report we discuss a potential option of operation of the European XFEL driven by high charge (1 nC to 3 nC) electron beams. We present the results of the production and characterization of high charge electron bunches. Experiments have been performed at PITZ and demonstrated good properties of the electron beam in terms of emittance. Simulations of the radiation properties of SASE FELs show that application of high charge electron beams will open up the possibility to generate radiation pulse energies up to a few hundred milli-Joule level. | ||
THPA10 | RF Photo Gun Stability Measurement at PITZ | 485 |
|
||
High stability of the RF photo gun is one of the necessary conditions for the successful operation of linac based free electron lasers. Fluctuations of the RF launch phase have significant influence on the beam quality. Investigation on the dependence of different gun parameters and selection of optimal conditions are required to achieve high RF gun phase stability. Measurements of the gun RF phase stability are based on beam charge and momentum monitoring downstream of the gun. The stability of the RF gun phase for different operating conditions has been measured at the Photo Injector Test facility at DESY in Zeuthen (PITZ) and the results will be presented. | ||
THPA15 | Simulation Studies of Generating Ultra Short Pulses at PITZ | 499 |
|
||
Generation of the ultra short electron bunches (<10fs bunch length) which have a small transverse phase space volume and relatively small energy spread is of great interest. Such bunches are required for fully coherent (transversally and longitudinally) FEL radiation (single spike lasing) and for plasma acceleration experiments. The Photo Injector Test Facility at DESY in Zeuthen has already demonstrated the possibility to generate and characterize high quality electron beams for a wide range of bunch charges. Currently electron bunches have a typical length of several ps. To study the possibility of producing short electron bunches at PITZ many beam dynamics simulations have been performed for 1pC bunch charge using the ASTRA code. The current PITZ beam line is supposed to be extended by a small magnet chicane. Several temporal profiles of the cathode laser pulse have been used for the simulations to produce ultra-short electron bunches with small transverse sizes. The results of the beam dynamics simulations are presented and discussed. | ||
THPA06 | Emittance for Different Bunch Charges at the Upgraded PITZ Facility | 473 |
|
||
Optimizations of electron sources for short-wavelength Free Electron Laser (FELs) at the Photo Injector Test facility at DESY, location Zeuthen (PITZ) have been continued with a new radio frequency (RF) gun cavity, a new post-accelerating Cut Disk Structure (CDS) booster cavity and several upgraded diagnostic components. The new booster cavity allows stable operation with higher acceleration and longer pulse trains than the operation with the previous TESLA type cavity. Electron beams with a maximum mean momentum of about 25 MeV/c can be produced with the setup described in this paper. Together with the upgraded RF system for the gun and the new CDS booster cavity, the electron beam stability was significantly improved. A large fraction of the measurement program in 2010-2011was devoted to study the dependence of the transverse projected emittance on the bunch charge. Measurement results using this upgraded facility are reported and discussed. | ||
THPA15 | Simulation Studies of Generating Ultra Short Pulses at PITZ | 499 |
|
||
Generation of the ultra short electron bunches (<10fs bunch length) which have a small transverse phase space volume and relatively small energy spread is of great interest. Such bunches are required for fully coherent (transversally and longitudinally) FEL radiation (single spike lasing) and for plasma acceleration experiments. The Photo Injector Test Facility at DESY in Zeuthen has already demonstrated the possibility to generate and characterize high quality electron beams for a wide range of bunch charges. Currently electron bunches have a typical length of several ps. To study the possibility of producing short electron bunches at PITZ many beam dynamics simulations have been performed for 1pC bunch charge using the ASTRA code. The current PITZ beam line is supposed to be extended by a small magnet chicane. Several temporal profiles of the cathode laser pulse have been used for the simulations to produce ultra-short electron bunches with small transverse sizes. The results of the beam dynamics simulations are presented and discussed. | ||
THPA23 | Investigations on Thermal Emittance at PITZ | 519 |
|
||
The main aim of the Photo-Injector Test Facility at DESY, location Zeuthen (PITZ) is to develop and test an FEL photo-injector system capable of producing high charge electron bunches of lowest possible transverse emittance, which has a fundamental impact on FEL performance. Recent measurement results at PITZ showed a fairly small electron beam transverse projected emittance [1] which increased interest in the thermal emittance and its contribution to the overall electron beam emittance budget. Therefore thermal emittance was investigated at PITZ. Results of these studies are presented and discussed. | ||
THPA30 | First Results with Tomographic Reconstruction of the Transverse Phase Space at PITZ | 543 |
|
||
The development of high brightness electron sources capable to drive FELs like FLASH and European XFEL is a major objective of the Photo-Injector Test Facility at DESY in Zeuthen, PITZ. A key parameter used to define the beam quality at PITZ is the transverse phase-space density distribution and its evolution along the beamline. Complementary to the standard phase-space measurement setup constituting slit-scan stations, a module for tomographic diagnostics has been commissioned in 2010/2011. It consists of four observation screens separated by FODO cells and an upstream matching section. The expected advantages of the tomography method are the possibility to measure both transverse planes simultaneously and an improved resolution for low charges and short pulse trains. The fundamental challenges are related to strong space-charge forces at low beam momentum of only 25~MeV/c at PITZ at the moment. Such a constraint presents an obstacle to obtain beam envelope parameters well-matched to the optics of the FODO lattice. This contribution presents the first practical experience with the phase-space tomography module. | ||
THPB27 | Application and Design of the Streak and TV Readout Systems at PITZ | 613 |
|
||
Funding: Deutsches Elektronen-Synchrotron DESY, Germany The Photo Injector Test facility at DESY in Zeuthen (PITZ) was built to develop and optimize photoelectron injectors for FELs like FLASH and the European XFEL. In PITZ electrons can be accelerated to momenta up to 20 MeV/c. Optimization of all injector parameters such as the longitudinal properties of the electron bunch is needed. A streak system is used to measure the complete longitudinal phase space distribution of the bunch with an accuracy of few ps. In this system the electron beam penetrates Aerogel radiators or Optical Transition Radiation screens OTR and produces Cherenkov light, which is transported by an optical line to a streak camera. The emitted light presents the charge distribution in the electron bunch. Some modifications of the streak beamline, such as using a Hybrid of lenses and mirrors to improve resolution and using quartz lenses to overcome the radiation damage are foreseen. A TV system is used to observe the electron beam directly, where screens of Yttrium Aluminum Garnet YAG and OTR are used to produce a direct image of the beam. An overview of the existing systems, the measurements, the difficulties and future modifications will be presented. |
||