Author: Düsterer, S.
Paper Title Page
TUPA22 FLASH II: A Project Update 247
 
  • B. Faatz, V. Ayvazyan, N. Baboi, V. Balandin, W. Decking, S. Düsterer, H.-J. Eckoldt, M. Felber, J. Feldhaus, N. Golubeva, K. Honkavaara, M. Körfer, T. Laarmann, A. Leuschner, L. Lilje, T. Limberg, D. Nölle, F. Obier, A. Petrov, E. Plönjes, K. Rehlich, H. Schlarb, B. Schmidt, M. Schmitz, S. Schreiber, H. Schulte-Schrepping, J. Spengler, M. Staack, K.I. Tiedtke, M. Tischer, R. Treusch, M. Vogt, H.C. Weddig
    DESY, Hamburg, Germany
  • J. Bahrdt, R. Follath, K. Holldack, A. Meseck, R. Mitzner
    HZB, Berlin, Germany
  • J. Chen, H.X. Deng, B. Liu
    SINAP, Shanghai, People's Republic of China
  • M. Drescher, A. Hage, V. Miltchev, R. Riedel, J. Rönsch-Schulenburg, J. Roßbach, M. Schulz, A. Willner
    Uni HH, Hamburg, Germany
  • M. Gensch
    HZDR, Dresden, Germany
  • F. Tavella
    HIJ, Jena, Germany
 
  FLASH II is an extension of the existing FLASH facility by an undulator line and an experimental Hall of which the construction will start before the end of the year. Aims are to increase beamtime for users and implement HHG seeding for the longer wavelength range from 10 to 40 nm at a reduced repetition rate of 100 kHz. Additional seeding schemes are under discussion as a future option. We will present a progress report of FLASH II.  
 
THOC3
Few-fs X-ray Pulse Length Measurement at LCLS  
 
  • A.R. Maier, F. Grüner
    LMU, Garching, Germany
  • J.D. Bozek, R.N. Coffee
    SLAC, Menlo Park, California, USA
  • A.L. Cavalieri, I. Grguras
    CFEL, Hamburg, Germany
  • J.T. Costello
    DCU, Dublin, Republic of Ireland
  • G. Doumy
    ANL, Argonne, USA
  • S. Düsterer
    DESY, Hamburg, Germany
  • J. Gagnon, W. Helml, R. Kienberger, W. Schweinberger, V.S. Yakovlev
    MPQ, Garching, Munich, Germany
  • M. Meyer, P. Radcliffe, T. Tschentscher
    European XFEL GmbH, Hamburg, Germany
  • C. Roedig
    Ohio State University, USA
 
  The Linac Coherent Light Source (LCLS) has an unique operating mode, delivering X-ray pulses of only a few femtoseconds (fs) length, though so far the precise X-ray pulse length has been experimentally inaccessible. In a recent experiment we measured the LCLS pulse length in this regime to be 4 fs fwhm by overlapping the FEL pulse with an optical infrared laser in a Neon gas jet. The IR laser maps the temporal X-ray pulse profile into the energy spectrum of the generated photolectrons. By measuring the photoelectron spectrum a direct characterization of the FEL pulse is possible. In the experiment we were able to directly access the temporal substructure of the X-ray pulses, measured the typical pulse length in the LCLS low charge mode to be 4 fs fwhm and showed single-spike, single-fs X-ray pulses.  
slides icon Slides THOC3 [2.818 MB]