Paper | Title | Page |
---|---|---|
THOB5 | FEL Spectral Measurements at LCLS | 461 |
|
||
Funding: Work supported in part by the DOE Contract DE-AC02-76SF00515. Control and knowledge of the spectrum of FEL X-ray radiation at the LCLS is important to the quality and interpretation of experimental results. Narrow bandwidth is useful in experiments requiring high-brightness beams. Wide bandwidth is particularly useful for photon energy calibration using absorption spectra. Since LCLS was commissioned in 2009 measurements have been made of average and single shot spectra of X-ray FEL radiation at the LCLS over a range of 800 to 8000 eV, for fundamental and harmonic radiation. These include correlations with chirp, bunch current, undulator K-taper, electron beam energy, and charge as well as some specialized machine configurations. In this paper we present results and discuss the relationship of the electron beam energy distribution to the observed X-ray spectrum. |
||
![]() |
Slides THOB5 [0.442 MB] | |
THOC4 | Transverse Size and Distribution of FEL X-ray Radiation of the LCLS | 465 |
|
||
Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515 Understanding and controlling the transverse size and distribution of FEL X-ray radiation of the LCLS at the SLAC National Accelerator Laboratory is discussed. Understanding divergence, source size, and distributions under various conditions is a convolution of many effects such as the electron distribution, the undulator alignment, micro-bunching suppression, and beta-match. Measurements of transverse size along the X-ray pulse and other studies designed to sort out the dominant effects are presented and discussed. |
||
![]() |
Slides THOC4 [1.874 MB] | |
THPB31 | Multiple FELs from the One LCLS Undulator | 629 |
|
||
Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Science, under Contract DE-AC02-76SF00515. The FEL of the Linac Coherent Light Source (LCLS) at SLAC is generated in a 132 m long undulator. By introducing a kink in the undulator setup and launching different electron pulses with a small kick, we achieved two FEL beams with a separation of about 10 σ. These beams were separated at down stream mirrors and brought to the entrances of the soft and hard X-ray hutches. This was done at low energy creating soft X-rays which require only a shorter length to get to saturation. At high energy the whole undulator has to be "re-pointed" pulse by pulse. This can be done using 33 undulator correctors creating two straight lines for the photons with small angle to point the FEL to different mirrors pulse by pulse even at high energy. Experiments will be presented and further ideas discussed to get different energy photons created and sent to the soft and hard X-ray mirrors and experiments. |
||