Author: Corlett, J.N.
Paper Title Page
MOPB32 System Trade Analysis for an FEL Facility 89
 
  • M.W. Reinsch, B. Austin, J.N. Corlett, L.R. Doolittle, G. Penn, D. Prosnitz, J. Qiang, A. Sessler, M. Venturini, J.S. Wurtele
    LBNL, Berkeley, California, USA
 
  Designing an FEL from scratch requires the design team to balance multiple science needs, FEL and accelerator physics constraints and engineering limitations. STAFF (System Trade Analysis for an FEL Facility) enables the user to rapidly explore a large range of Linac and FEL design options. The model utilzes analytical models such as the Ming Xie formulas when appropriate and look-up tables when necessary to maintain speed, flexibility and extensiblity. STAFF allows for physics models for FEL harmonics, wake fields, cavity higher-order modes and aspects of linac particle dynamics. The code will permit the user to study error tolerances and multiple beamlines so as to explore the full capabilities of an entire user facility. This makes it possible to optimize the integrated system in terms of performance metrics such as photons/pulse, photons/sec and tunability range while ensuring that unrealistic requirements are not put on either the electron beam quality, undulator field/gap requirements or other system elements. This paper will describe preliminary results from STAFF as applied to a CW FEL soft X-ray facility.  
 
THPB14 APEX Project Phase 0 and I Status and Plans and Activities for Phase II 582
 
  • F. Sannibale, B.J. Bailey, K.M. Baptiste, J.M. Byrd, A.L. Catalano, D. Colomb, C.W. Cork, J.N. Corlett, S. De Santis, L.R. Doolittle, J. Feng, D. Filippetto, G. Huang, S. Kwiatkowski, W.E. Norum, H.A. Padmore, C. F. Papadopoulos, G. Penn, G.J. Portmann, S. Prestemon, J. Qiang, D.G. Quintas, J.W. Staples, M.E. Stuart, T. Vecchione, M. Venturini, M. Vinco, W. Wan, R.P. Wells, M.S. Zolotorev, F.A. Zucca
    LBNL, Berkeley, California, USA
  • M. J. Messerly, M.A. Prantil
    LLNL, Livermore, California, USA
  • C. Pellegrini
    UCLA, Los Angeles, California, USA
  • M. Yoon
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
The APEX project at the Lawrence Berkeley National Laboratory is devoted to the development of a high repetition rate (MHz-class) electron injector for X-ray FEL applications. The injector is based on a new concept photo-gun, utilizing a normal conducting 187 MHz RF cavity operating in CW mode in conjunction with high quantum efficiency photocathodes able to deliver the required repetition rates with available laser technology. The APEX activities are staged in two phases. In Phase I, the electron photo-gun is constructed, tested and several different photo-cathodes, such as alkali antimonides, Cs2Te [1], diamond amplifiers [2], and metals, are tested at full repetition rate. In Phase II, a pulsed linac is added for accelerating the beam at several tens of MeV to prove the high brightness performance of the gun when integrated in an injector scheme. Based on funding availability, after Phase II, the program could also include testing of new undulator technologies and FEL studies. The status of Phase I, in its initial experimental phase, is described together with plans and activities for Phase II and beyond.
[1] In collaboration with INFN-LASA, Milano, Italy.
[2] In collaboration with Brookhaven National Laboratory, Upton NY, USA