Author: Ben-Zvi, I.
Paper Title Page
WEOA3 Proof-of-principle Experiment for FEL-based Coherent Electron Cooling 322
 
  • V. Litvinenko, S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, A.V. Fedotov, Y. Hao, D. Kayran, G.J. Mahler, A. Marusic, G.T. McIntyre, W. Meng, M.G. Minty, I. Pinayev, V. Ptitsyn, T. Rao, T. Roser, B. Sheehy, S. Tepikian, R. Than, D. Trbojevic, J.E. Tuozzolo, G. Wang, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • D.T. Abell, G.I. Bell, D.L. Bruhwiler, C. Nieter, V.H. Ranjbar, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • M.A. Kholopov, O.A. Shevchenko, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders [1]. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using one of JLab’s SRF cryo-modules. In this paper, we describe the experimental setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC.
[1] Vladimir N. Litvinenko, Yaroslav S. Derbenev, Physical Review Letters 102, 114801
 
slides icon Slides WEOA3 [3.568 MB]  
 
TUOC3 High QE, Low Emittance, Green Sensitive FEL Photocathodes Using K2CsSb 179
 
  • H.A. Padmore, D. Dowell, J. Feng, T. Vecchione, W. Wan
    LBNL, Berkeley, California, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231, KC0407-ALSJNT-I0013, and DE-SC0005713.
We describe the development of photocathodes based on Potassium-Cesium-Antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light and low transverse emittance. We have demonstrated QE of 7% at 532 nm, a normalized transverse emittance of 0.36 μm at 543 nm and 3 MV/m field gradient[1]. We have also shown that the material can be relatively robust to residual water contamination and we have extracted current densities of 1 mA/mm2 with very long lifetime. We believe that this work is an important step forward in FEL development where high repetition rate is required.
[1] Applied Physics Letters (submitted)
 
slides icon Slides TUOC3 [4.825 MB]