Soft X-ray FEL Oscillators

32nd International Free Electron Laser Conference Malmo, Sweden

J.S. Wurtele UCB/LBNL Co workers: W. Fawley, P. Gandhi, X.-W. Gu, G. Penn, M. Reinsch R. R. Lindberg, K.-J. Kim, A. Zholents

A coherent CW soft x-ray laser

Next Generation Light Source at LBNL

- Injector 25 10 eV - 1 keV range ALS Portal Accelerator in Tunability and time-bandwidth Tunnel 46 FEL and X-Ray limited pulses <=1ps Beamline Array High repetition rate •Seeding by laser, Experimental Hall and Laboratory Space •OR Oscillator-driven harmonic system
- •High average power below damage threshold peak power for low scattering rate experiments

Hard X-Ray FEL Oscillator

- Store an X-ray pulse in a Bragg cavity→ multi-pass gain & spectral cleaning
- Provide meV bandwidth ($\Delta\omega/\omega \sim 10^{-7}$)
- MHz pulse repetition rate \rightarrow high average brightness

Originally proposed in 1984 by Collela and Luccio and resurrected in 2008 (KJK, S. Reiche, Y. Shvyd'ko, PRL 100, 244802 (2008)

What can we do in the soft X-ray regime?

- Cannot use Bragg reflection in the soft X-ray regime
- Reflectivity at 1nm is poor for layered dielectrics
- High repetition rate sources at 1nm are not available
- Short bunch (single SASE spike): we consider longer bunches
- layered dielectric mirrors good for 13.4 nm and longer wavelengths

→ ECHO scheme for high harmonics and tuning

→ Source can be FEL itself using an oscillator

High reflectivity multilayer mirrors

Need to operate at high harmonic for full tunability

Courtesy Eric Gulickson and David Attwood, LBNL

Oscillator Bunching and Radiator

Chicane 1 acts to reduce bunching and lower intracavity power Chicane 2 bunches at desired harmonic for radiator

Barbini et al 1990 BNL 52273

August 24, 2010

Later with optical klystron configuration [Dattoli et al 2004]

Echo Enabled FEL

Stupakov, PRL 2009

Compact method for lasing at high harmonics without cascade Stability of bunching determined by ebeam and seed lasers Longitudinal coherence and small bandwidth is important for many users

Two-oscillator echo enabled tunable soft x-ray FEL

Disadvantages:

Oscillators induce energy spread and overbunching Requires optics in soft xray regime

Two-oscillator echo-enhance FEL: time independent simulation

August 24, 2010

<u>Comments</u>

- The induced energy spread is too large---the bunching is OK, but the radiator will have trouble;
 FEL oscillators 'like' to overbunch bunch the beam.
- Time dependent GINGER simulations do not produce uniform bunching along the bunch.
- We need not have the FEL produce 215nm radiation.
 We assume an input laser seed
- We insert a chicane to reduce the induced energy spread in oscillator #1

Numerical Simulation: How we model the oscillator-echo scheme with time-dependent GINGER

- <u>43nm oscillator</u>: Time-dependent Ginger oscillator calculation with a dispersive element(800 contiguous 43 nm slices)
- First Chicane: 6-dimensional phase space transformation code from Genesis. Then re-bin and re-group to 215nm slices.
- 215nm modulator: Time-dependent Ginger run. LASER SEED
- Second Chicane: 6-D phase space transformation Radiator: Time-dependent Ginger run

43 nm oscillator phase space

Central slices (typical)

Bunch phase space at 4 locations vs position in bunch

Chicane 1

Chicane 2

Modulator 2 exit

Osc 1 exit

August 24, 2010

Radiator output at 2.7 nm

80th harmonic of 215 nm 25m undulator 2.2 cm period and a_w=2

10:10:50 **Output Radiation Power vs. TIME** 2010 08 22 1.2E+08 110MW 1.0E+08 8.0E+07 6.0E+07 6.0E+07 M~25fs 2.0E+07 0.0E+00 -5.7E-14-3.4E-14-1.1E-14 1.1E-14 3.4E-14 5.7E-14 TIME Note: HGHG does better ~300MW,~50fs

<u>Comments</u>

- The above runs are not optimized with respect to the large number of possible parameter combinations
- A nonlinear optical element can change the saturated FEL dynamics.
- This should allow for more uniform bunching
- This should allow for less energy spread.
- We are looking for such an element, and will be happy to know of one!
- There are two geometries that avoid the problems completely (but use more real estate).
- We can use one cavity instead of two. Studied with timeindependent GINGER at 13nm:

ECHO Oscillator Configuration: single cavity 13nm

ECHO Oscillator Configuration: single cavity 13nm

time-independent GINGER

ECHO SCHEME USING FRESH BUNCH

- Short wavelength radiator precedes oscillators
- Oscillators should work if radiator energy spread is not too large
- Oscillator FELs only produce power

24th Harmonic echo with I=600A

Radiation Power vs. Z

8/25/2010

scheme [i.e., original echo FEL proposal]

Assumes oscillators work for radiator first scheme -not yet simulated

Brightness conserved: 600A current, x4 energy spread

time-independent GINGER

4688.4

-38

75

38

13nm Echo Summary

		Energy spread at start of radiator	Bunching at start of radiator	Saturation length in radiator	Saturation power in radiator
	Oscillator echo 12 th harmonic	0.0190 %	0.11	20 m	180 MW
	HGHG Oscillator 12 th harmonic	0.0085 %	0.09	18 m	280 MW
	Oscillator echo with sacrificial bunch: 24 th harmonics 600A	0.04%	0.09	7 m	900 MW
		Simulations were performed using GINGER in time independent mode			

2.4 GeV Emittance~10⁻⁷ m 150 A 24 keV energy spread

Conclusions

- Soft x-ray optics and high brightness bunches with FEL oscillators yields promising ideas for tunable X-rays based on EEHG.
- The use of oscillators avoids the need for external seeding. The use of EEHG allows for tuning.
- Improvements:
 - Nonlinear optical element to control saturation and enhance stability
 - Sacrificial bunches for echo seed radiation generation
 - Radiator-first geometry
 - Sensitivity (jitter, error) studies; long bunch, high harmonic and brightness limitations, possible experiment, microwave tube version (?).
 - There are many possible configurations of soft X-ray FEL systems, and further work is required to understand their limitations and capabilities, costs and challenges.