FLASH Upgrade and First Results

FLASH free-electron laser user facility at DESY

Siegfried Schreiber DESY

for the FLASH team

FEL 2010 Malmö, Sweden Aug 23-27, 2010

FLASH.

Free-Electron Laser in Hamburg

FLASH at DESY in Hamburg

- Single-pass high-gain SASE FEL
 - SASE = self-amplified spontaneous emission
- Photon wavelength range from vacuum ultraviolet to soft x-rays
- Free-electron laser user facility since summer 2005
 - 1st period: Jun 2005 Mar 2007
 - 2nd period: Nov 2007 Aug 2009
 - 3rd period: Sep 2010 Sep 2011
- FLASH is also a test bench for the European XFEL and the International Linear Collider (ILC)
- FLASH II, a second undulator beam line is in preparation

FLASH layout before upgrade (Sep-2007 – Sep-2009)

- Normal conducting 1.3 GHz RF gun
- > Ce₂Te cathode
- > Nd:YLF based ps photocathode laser

- > TESLA type superconducting accelerating modules
- > Each module has eight 9-cell Nb cavities
- > RF frequency at 1.3 GHz

- Fixed gap undulator
- > Total magnetic length ~ 27 m
- > Permanent NdFeB magnets

FEL performance 2nd user period (Nov-2007 – Aug-2009)

FLASH. Free-Electron Laser in Hamburg

Typical user operation parameters 2nd user period

Wavelength range (fundamental) Average single pulse energy Pulse duration (FWHM) Peak power (from av.) Average power (example for 500 pulses/sec) Spectral width (FWHM) Peak Brilliance 6.8 - 40.5 nm $10 - 100 \mu \text{J}$ 10 - 70 fs 1 - 5 GW $\sim 15 \text{ mW}$ $\sim 1 \%$ $10^{29} - 10^{30} *$

* photons/s/mrad²/mm²/0.1%bw

- more than 100 publications on photon science at FLASH in high impact journals
 - <u>http://hasylab.desy.de/facilities/flash/publications/selected_publications</u>

Upgrade shutdown: September 2009 – February 2010

The new FLASH layout

2010 DESY

First Lasing at 4.45 nm

FLASH Undulators

- > 6 undulator modules, total length 27 m
- > Fixed gap of 12 mm
 - permanent NdFeB magnets
 - peak B = 0.48 T, K = 1.23, period of 27.3 mm

Commissioning Step 4: Lasing below 5 nm

- Lasing at 4.x nm scheduled Jun-4 Jun-11
- First lasing after upgrade in May-25 (12.5 nm)
- First lasing with linearized phase space (ACC39 on) in June-3 (12.5 nm)
- First lasing below 5 nm in June-6 @ 4.45 nm

in Hamburg

First Lasing at 4.45 nm

SASE Parameters for 4.45 nm

Preliminary data for 4.45 nm:

- Energy 140 µJ (max.)
- > Peak power ~ 2 GW (estimate)
- bandwidth 0.25 % rms
- > B ~ 10³⁰ 10³¹ photons/s/mrad²/mm²/0.1%bw

- For commissioning purposes, a couple of different wavelengths have already been set-up, many more to come
- > 10 Hz, between 1 and 80 bunches per train so far, compression using 3.9 GHz cavities

Examples:

- > 4.45 nm, 140 µJ max, average 75 µJ per pulse
- > 12.4 nm, 105 µJ max, average 75 µJ per pulse
- > 13.4 nm, 300 µJ max, average 250 µJ per pulse
- > 19.2 nm, 350 µJ max, average 230 µJ per pulse
- > 26.2 nm, 280 µJ max, average 160 µJ per pulse 13.4 nm, distance to screen 23.5 m, ticks at 3 mm

Radiation pulse energies are significantly larger and easier to tune compared to roll-over compression

in Hamburo

Example of SASE at 19.2 nm

> 10 bunches/train, 10 Hz, max 350 µJ per pulse, av 230 µJ per pulse

> 30 bunches/train, 10 Hz, max 225 µJ per pulse, av 140 µJ per pulse, average power 52 mW

in Hamburg

3rd User Period

- > The next, 3rd user period starts 2-Sep-2010
- > Almost 400 12 h-shifts are scheduled until 11-Sep-2011
- > Again, blocks of 4 weeks of user experiments are sandwiched by study weeks and beamline/user run preparation
- A few weeks of general accelerator studies are scheduled Jan 2010 and after the user run in Oct. 2011

Schedule available at flash.desy.de

	- 27	0.001 - 11.001	C			school noildays nn	lasing with long trains
	28	12.Jul - 18.Jul	7			school holidays HH/SH	
	29	19.Jul - 25.Jul	2	FEL studies		school holidays HH/SH	
	30	26.Jul - 1.Aug	2			school holidays HH/SH	
	31	2.Aug - 8.Aug	3		preparation user run	school holidays HH/SH	
	32	9.Aug - 15.Aug	3			school holidays HH/SH	
	33	16.Aug - 22.Aug	3			school holidays HH/SH	photon beamlines commissioned
	34	23.Aug - 29.Aug	3			FEL Malmö	Start 3rd User Period
	35	30.Aug - 5.Sep	1	User Run		Linac Tsukuba	
	36	6.Sep - 12.Sep	1				
	37	13.Sep - 19.Sep	1				
	38	20.Sep - 26.Sep	2	FEL studies			
	- 39	27.Sep - 3.Oct	3		preparation user run		
	40	4.0ct - 10.0ct	1	User Run			
	41	11.0ct - 17.0ct	1				
	42	18.0ct - 24.0ct	1				
	43	25.0ct - 31.0ct	1				
	44	1.Nov - 7.Nov	2	FEL studies			
	45	8.Nov - 14.Nov	2				
	46	15.Nov - 21.Nov	3		preparation user run		
	47	22.Nov - 28.Nov	1	User Run			
	48	29.Nov - 5.Dec	1				
	49	6.Dec - 12.Dec	1				
	50	13.Dec - 19.Dec	1				
	51	20.Dec - 26.Dec	5	Maintenance			
January	52	27.Dec - 2.Jan	5				
2011	1	3.Jan - 9.Jan	4		preparation accelerator studies		2011
_	2	10.Jan - 16.Jan	4	Accelerator studies			
	3	17.Jan - 23.Jan	4				
	4	24.Jan - 30.Jan	2	FEL studies			
	5	31.Jan - 6.Feb	2				
-	6	7.Feb - 13.Feb	3		preparation user run		
2	7	14.Feb - 20.Feb	1	User Run			
_	8	21.Feb - 27.Feb	1				
1	9	I 28 Febl - 16 Mar - 1	11				

Example of upgraded components

Upgrade of RF stations and waveguide system

- > Two new 1.3 GHz RF stations + 1 modulator replaced
 - all stations of same type now
 - Four 5 MW klystrons, one 10 MW multi-beam klystron, 3.9 GHz klystron
- > One additional RF station to optimize operation with seven accelerating modules
- Accelerating modules 1, 6, and 7 have the optimized XFEL type waveguide distribution

RF Gun

- RF gun: 1.3 GHz copper cavity, 1 ½ cell
- RF power 3.8 MW, RF pulse length up to 850 µs, 10 Hz
- New gun tested and commissioned at PITZ (DESY-Zeuthen)

- Dry ice cleaned gun body
- Darkcurrent is reduced by a factor of 10 compared to previous guns
- This allows operation with 10 Hz and in the future with higher gradients
- Darkcurrent kicker + collimator at the gun exit to further reduce the transported current by ~70 %

3.9 GHz (3rd harmonic) Module and Module 1

- FLASH. Free-Electron Laser in Hamburg
- New 1st accelerating module with improved cavities and Piezo tuners
- > 3rd harmonic module with four nine-cell superconducting cavities operated at 3.9 GHz
 - includes RF system and LLRF regulation
 - built at FNAL (Fermilab) in a collaboration with DESY

Excellent performance of cavities

> 3.9 GHz cavities outperform design goal
→ routine operation with 21 MV (module)

Mounting of accelerating modules in injector

Energy upgrade

- 7th superconducting TESLA type accelerating module installed
 - Prototype module for the European XFEL
 - Energy reach 240 MeV
- > Electron beam energy 1.2 GeV

Bunches			
1 0.6 nC	IZOU.I MEV		
1000 kHz			

Transport of 7th accelerating module

DES

sFLASH

sFLASH: experiment for seeded FEL radiation

- Soal: generation of seeded FEL radiation for piloting experiments
- Installed between the collimator and SASE undulators in the FLASH linac → new electron beamline with a length of ~ 40 m
- > HHG (high harmonic generation) seeding at ~ 38 nm (~ 13 nm as an option)

in Hamburg

- > synchronisation goal for pump probe experiments: 10 fs
- Collaboration of DESY and University Hamburg

sFLASH section

out-coupling beamline

First SASE at sFLASH at 38.4 nm

- SASE spectra, single shot
- > Center wavelength 38.4 nm, width ~0.5 nm

Talk on We 9:00 h WEOAI2 by Joern Boedewadt,

Posters in the TUPB session

Photon Beamline

Photon diagnostics and photon lines

Bunch Compression

Transverse deflecting cavity LOLA

Longitudinal bunch structure

- LOLA is moved to a new location just upstream of the SASE undulators
- time resolution 20 fs
- energy resolution 1.4 10⁻⁴
- Kicker and off-axis screen
 - on-line beam diagnostics, arbitrary pulse in the train can be picked
- New installation includes a dispersive arm

- Non-linearity in the longitudinal phase space leads to a roll-over compression
 - \rightarrow development of a sharp spike ~ 50 fs fwhh with high peak current

Regular Compression with 3rd Harmonic Cavities

- Flattening of the longitudinal phase space
- More regular compression with high peak current

Expected photon energy and pulse length

- Regular compression scheme with 3rd harmonic cavities, charge 1 nC
 - \rightarrow larger energy 1-1.5 mJ
 - \rightarrow photon pulse lengths ~30 fs rms
 - Radiation pulse energy/charge

- Compression with lower bunch charge → charge from 0.02 to 1 nC
 - \rightarrow variable pulse length in the range of

Radiation pulse width (rms)

~ 1 and 30 fs (rms)

Linearization of the longitudinal phase space

- > Measured with LOLA,
- > dispersive section
- > beam energy 700 MeV
- Slight compression with 1st module (ACC1)
- > 3.9 GHz cavities on/off

Linearization of the longitudinal phase space

Energy dE/E (0.1 %)

- Measured with LOLA, >
- dispersive section >
- beam energy 700 MeV >
- Slight compression with 1st module (ACC1)
- 3.9 GHz cavities on/off

Linearization of the longitudinal phase space

- > 1st module (ACC1) set to moderate compression
- > Bunch shape measured for increasing voltage in the 3rd harmonic cavities

Longitudinal Bunch Shape

- Bunch shape for slight compression with first accelerating module
 - measured with LOLA at 700 MeV

MOPC08 Behrens, Gerth: Measurement of Sliced-Bunch Parameters at FLASH

For different fields applied to the 3.9 GHz cavities (ACC39)

LLRF

Upgrade of the LLRF system

> Upgrade LLRF of all RF stations

- Same type of hardware
- SimconDSP controller
- IF = 250 kHz, IQ-sampling scheme
- Sampling rate 81 MHz (use averaging)
- > RF control for 3.9 GHz
 - Probe, forward, and reflected signals
 - New RF downconverter & LO generation with
 - IF = 54 MHz, non IQ-sampling, LO = 3954 MHz
 - Sampling rate 81 MHz

10 Channel 14 bit ADCs 81 MHz clock rate 4 DAC, 14 bits 2 Gigalinks FPGA: XILINX Virtex II pro

Upgrade Master-Oscillator and Gun/ACC1 LLRF

- New Master installed May 2008
- Finishing up with backup Master and refurbished cabling
 - New rack & cabling for RF gun and ACC1/ACC39
 - Enclosed racks for better temperature stability
 - Parallel cabling for development system
 - Careful noise investigation and power level adjustment of LO and RF signals

in Hamburg

> Upgrade & unified FPGA controller firmware

- Multiple feed forward table (main/beam loading/correction)
- Multiple set point table (main/beam based correction)
- Model based Multiple-In-Multiple-Out (MIMO) controller
- Charge correction & intra-train beam based feedback
- Exception & Error handling, limiters
- Error and status displays

LLRF RF controller schematics

Feed forward table architecture

Upgrade LLRF control software

> Unified and new control software

- New C++ architecture for front-end server
- LLRF library based on SysML approach
- Unified naming convention
- Automatic firmware downloads
- Finite State Machine for automation
- High level software: diagnostics, calibration...
- Integration to data acquisition system
- Model based learning feed forward (LFF)
- Loop phase/gain correction
- Fast piezo control for cavity detuning comp.
- ... and many more
- Control software ~70 % completed

First results on stability and beam based feedbacks

- > Arrival time jitter ds 1st bunch compressor 70 fs rms (5 min)
 → dE/E (ACC1) < 1 ⋅ 10⁻⁴
- Learning feedforward (LFF) and beam based feedbacks (BBFB)

Talk on Thursday by W. Koprek, THOAI2 Intra-train Longitudinal Feedback for Beam Stabilization at FLASH

> w/o adaptive feedforward

> adaptive feedforward applied

FLASH II

FLASH II

- Second undulator line and experimental hall
- Common proposal by DESY and Helmholtz-Zentrum Berlin
- Project approved, construction starts end of 2011

Summary and outlook

- FLASH finished in August 2009 the very successful 2nd user period
 - 5700 hours of delivered FEL radiation to user experiments
 - > 100 publications on photon science at FLASH in high ranked journals
- > Upgrade shutdown from autumn 2009 to early 2010
- Major modifications
 - energy upgrade to 1.2 GeV (7th accelerating module installed)
 - installation of the 3rd harmonic module
 - sFLASH seeding experiment

Lasing at 4.45 nm June 6, 2010

- Phase space linearization with 3rd harmonic works excellent
- Single photon pulse energies of up to 350 µJ
- > 3rd FEL user period starts 2-Sep-2010
- FLASH II approved

in Hamburc

- > MOOAI3 First Lasing at FLASH with 4.45 nm
- > MOPA01 FLASH II Status and Design
- > MOPC04 Options of FLASH Extension for Generation of Circularly Polarized Radiation in the Wavelength Range Down to 1.2 nm
- > MOPC08 Measurement of Sliced-Bunch Parameters at FLASH
- > MOPC09 Upgrade of the FEL User Facility Flash
- > MOPC10 Ytterbium Fibre Laser Based Electro-Optic Measurements of the Longitudinal Charge Distribution of Electron Bunches at FLASH
- > MOPC11 Commissioning of an Electro-Optic Electron Bunch Length Monitor at FLASH
- MOPC09 Upgrade of the FEL User Facility FLASH
- > TUOBI2 FLASH Upgrade and First Results
- > TUPB20 Present Status and Commissioning Results of sFLASH
- > TUPB21 Characterization of Seeded FEL Pulses at FLASH: Status, Challenges and Opportunities
- > TUPB22 The XUV Injection Beam Line for Direct Seeding at sFLASH
- > WEOAI2 sFLASH First results of a direkt seeding at FLASH
- > WEOBI2 Ultra-Short Low Charge Operation at FLASH and the European XFEL
- > WEPB29 Simulations on Operation of the FLASH Injector in Low Charge Regime
- > WEPB30 Multistage Bunch Compression
- > THOAI2 Intra-train Longitudinal Feedback for Beam Stabilization at FLASH
- > THOA3 RF-based Synchronization of the Seed and Pump-Probe Lasers to the Optical Synchronization System at FLASH
- > THPA04 Longitudinal Bunch Arrival-Time Feedback at FLASH
- > THPA05 Performance of the FLASH Optical Synchronization System Utilizing a Commercial SESAM-Based Erbium Laser
- > THPA06 Real-Time Sampling and Processing Hardware for Bunch Arrival-Time Monitors at FLASH and XFEL
- > THPC15 Status of Plane Grating Monochromator Beamline at FLASH
- > FROBI1 Ultrafast Single-Shot Diffraction Imaging of Nanoscale Dynamics

